Skip to main content

Advertisement

Log in

Isolation and characterization of oxalotrophic bacteria from tropical soils

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The oxalate–carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h−1. Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate–carbonate pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Angle JS, McGrath SP, Chaney RL (1991) New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol 57:3674–3676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackmore MA, Quayle JR (1968) Choice between autotrophy and heterotrophy in Pseudomonas oxalaticus. Growth in mixed substrates. Biochem J 107:705–713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Verrecchia EP, Aragno M (2002) Is the contribution of bacteria to terrestrial carbon budget greatly underestimated? Naturwissenschaften 89:366–370

    Article  CAS  PubMed  Google Scholar 

  • Braissant O, Cailleau G, Aragno M, Verrecchia EP (2004) Biologically induced mineralization in the tree Milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology 2:59–66

    Article  CAS  Google Scholar 

  • Braissant O, Bonkat G, Wirz D, Bachmann A (2013) Microbial growth and isothermal microcalorimetry: growth models and their application to microcalorimetric data. Thermochim Acta 555:64–71

    Article  CAS  Google Scholar 

  • Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biol Biochem 38:2219–2232

    Article  CAS  Google Scholar 

  • Bravo D, Braissant O, Solokhina A, Clerc M, Daniels AU, Verrecchia E, Junier P (2011) Use of an isothermal microcalorimetry assay to characterize microbial oxalotrophic activity. FEMS Microbiol Ecol 78:266–274

    Article  CAS  PubMed  Google Scholar 

  • Bravo D, Martin G, David M, Cailleau G, Verrecchia E, Junier P (2013) Identification of active oxalotrophic bacteria by bromodeoxyuridine DNA-labeling in a microcosm soil experiment. FEMS Microbiol Lett 348:103–111

    Article  CAS  PubMed  Google Scholar 

  • Burget EG, Verma R, Mølhøj M, Reiter W-D (2003) The biosynthesis of l-arabinose in plants: molecular cloning and characterization of a golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of arabidopsis. Plant Cell 15:523–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cailleau G, Braissant O, Verrecchia EP (2004) Biomineralization in plants as a long-term carbon sink. Naturwissenschaften 91:191–194. doi:10.1007/s00114-004-0512-1

    Article  CAS  PubMed  Google Scholar 

  • Cailleau G, Braissant O, Dupraz C, Aragno M, Verrecchia EP (2005) Biologically induced accumulations of CaCO3 in orthox soils of Biga, Ivory Coast. Catena 59:1–17

    Article  CAS  Google Scholar 

  • Cailleau G, Braissant O, Verrecchia E (2011) Turning sunlight into stone: the oxalate–carbonate pathway in a tropical tree ecosystem. Biogeosciences 8:1755–1767

    Article  CAS  Google Scholar 

  • Cailleau G, Mota M, Bindschedler S, Junier P, Verrecchia EP (2014) Detection of active oxalate–carbonate pathway ecosystems in the Amazon basin. Catena 116:132–141

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2013) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294–D296

    Article  Google Scholar 

  • Daniel SL, Pilsl C, Drake HL (2007) Anaerobic oxalate consumption by microorganisms in forest soils. Res Microbiol 158:303–309

    Article  CAS  PubMed  Google Scholar 

  • Dean JA (1999) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  • Dijkhuizen L, Wiersma M, Harder W (1977) Energy production and growth of Pseudomonas oxalaticus OX1 on oxalate and formate. Arch Microbiol 115:229–236

    Article  CAS  PubMed  Google Scholar 

  • Dutton MV, Evans CS (1996) Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42:881–895

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  PubMed  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2004) The living soil : fundamentals of soil science and soil biology. Science Publishers, Enfield, USA, p 475

  • Guo X, Lidstrom ME (2008) Metabolite profiling analysis of Methylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Biotechnol Bioeng 99:929–940

    Article  CAS  PubMed  Google Scholar 

  • IUSS WRB (2006) World reference base for soil resources FAO. World Soil Res Rep 2:144

    Google Scholar 

  • Knutson D, Hutchins A, Cromack K Jr (1980) The association of calcium oxalate-utilizing Streptomyces with conifer ectomycorrhizae. A Van Leeuw J Microb 46:611–619

    Article  CAS  Google Scholar 

  • Koch M, Delmotte N, Ahrens CH, Omasits U, Schneider K, Danza F, Padhi B, Murset V, Braissant O, Vorholt JA, Hennecke H, Pessi G (2014) A link between arabinose utilization and oxalotrophy in Bradyrhizobium japonicum. Appl Environ Microbiol 80:2094–2101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liesack W, Weyland H, Stackebrandt E (1991) Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed-culture of strict barophilic bacteria. Microb Ecol 21:191–198

    Article  CAS  PubMed  Google Scholar 

  • Loewus FA, Saito K, Suto RK, Maring E (1995) Conversion of d-arabinose to d-erythroascorbic acid and oxalic acid in sclerotinia sclerotiorum. Biochem Bioph Res Co 212:196–203

    Article  CAS  Google Scholar 

  • Martin G et al (2012) Fungi, bacteria and soil pH: the oxalate–carbonate pathway as a model for metabolic interaction. Environ Microbiol 14:2960–2970

    Article  CAS  PubMed  Google Scholar 

  • Messini A, Favilli F (1990) Calcium oxalate decomposing microorganisms; a microbial group of the rhizosphere of forest plants. Ann Microbiol 40:93–101

    CAS  Google Scholar 

  • Mostacedo CB, Fredericksen TS (1999) Regeneration status of important tropical forest tree species in Bolivia: assessment and recommendations. Forest Ecol Manag 124:263–273

    Article  Google Scholar 

  • Müller H (1950) Oxalsäure als Kohlenstoffquelle für Mikroorganismen. Arch Mikrobiol 15:137–148

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Update world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Phulwaria M, Rai MK, Harish, Gupta AK, Ram K, Shekhawat NS (2012) An improved micropropagation of Terminalia bellirica from nodal explants of mature tree. Acta Physiol Plant 34:299–305

    Article  CAS  Google Scholar 

  • Qin S, Chen H-H, Klenk H-P, Kim C-J, Xu L-H, Li W-J (2010) Saccharopolyspora gloriosae sp. nov., an endophytic actinomycete isolated from the stem of Gloriosa superba L. Int J Syst Evol Micrbiol 60:1147–1151

    Article  CAS  Google Scholar 

  • Quayle JR, Keech DB (1960) Carbon assimilation by Pseudomonas oxalaticus (OX1). 343. Oxalate utilization during growth on oxalate. Biochem J 75:515–523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quayle JR, Keech DB, Taylor GA (1961) Carbon assimilation by Pseudomonas oxalaticus (OXI). 4. Metabolism of oxalate in cell-free extracts of the organism grown on oxalate. Biochem J 78:225–236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy S, Shilpa B, Giriraj A, Chiranjibi P (2011) Structure and floristic composition of tree stand in tropical forest in the Eastern Ghats of northern Andhra Pradesh, India. J Forest 22:491–500

    Article  Google Scholar 

  • Sahin N (2003) Oxalotrophic bacteria. Res Microbiol 154:399–407

    Article  CAS  PubMed  Google Scholar 

  • Sahin N (2004) Isolation and characterization of mesophilic, oxalate-degrading Streptomyces from plant rhizosphere and forest soils. Naturwissenschaften 91:498–502

    Article  CAS  PubMed  Google Scholar 

  • Sahin N (2005) Isolation and characterization of a diazotrophic, oxalate-oxidizing bacterium from sour grass (Oxalis pes-caprae L.). Res Microbiol 156:452–456

    Article  CAS  PubMed  Google Scholar 

  • Sahin N, Gökler I, Tamer A (2002) Isolation, characterization and numerical taxonomy of novel oxalate-oxidizing bacteria. J Microbiol 40:109–118

    CAS  Google Scholar 

  • Sahin N, Kato Y, Yilmaz F (2008) Taxonomy of oxalotrophic Methylobacterium strains. Naturwissenschaften 95:931–938

    Article  CAS  PubMed  Google Scholar 

  • Sahin N, Tani A, Kotan R, Sedlácek I, Kimbara K, Tamer AU (2011) Pandoraea oxalativorans sp. nov., Pandoraea faecigallinarum sp. nov. and Pandoraea vervacti sp. nov., isolated from oxalate-enriched culture. Int J Syst Evol Microbiol 61:2247–2253

    Article  CAS  PubMed  Google Scholar 

  • Schilling J, Jellison J (2004) High-performance liquid chromatographic analysis of soluble and total oxalate in Ca- and Mg-amended liquid cultures of three wood decay fungi. Holzforschung 58:682–687

    Article  CAS  Google Scholar 

  • Schiøtz M, Boesen MV, Nabe-Nielsen J, Sørensen M, Kollmann J (2006) Regeneration in Terminalia oblonga (Combretaceae)—A common timber tree from a humid tropical forest (La Chonta, Bolivia). Forest Ecol Manag 225:306–312

    Article  Google Scholar 

  • Schneider K, Skovran E, Vorholt JA (2012) Oxalyl-coenzyme a reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1. J Bacteriol 194:3144–3155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Srikumar R, Parthasarathy NJ, Manikandan S, Narayanan GS, Sheeladevi R (2006) Effect of Triphala on oxidative stress and on cell-mediated immune response against noise stress in rats. Mol Cell Biochem 283:67–74

    Article  CAS  PubMed  Google Scholar 

  • Tamer A, Aragno M (1980) Isolement, caractérisation et essai d’identification de bactéries capables d’utiliser l’oxalate comme seule source de carbon et d’énergie. Bull Soc Neuchatel Sci Nat 103:91–104

    Google Scholar 

  • Tamer AU, Aragno M, Sahin N (2002) Isolation and characterization of a new type of aerobic, oxalic acid utilizing bacteria, and proposal of Oxalicibacterium flavum gen. nov., sp. nov. Syst Appl Microbiol 25:513–519

    Article  CAS  PubMed  Google Scholar 

  • Trinchant J-C, Rigaud J (1996) Bacteroid oxalate oxidase and soluble oxalate in nodules of faba beans (Vicia faba L.) submitted to water restricted conditions: possible involvement in nitrogen fixation. J Exp Bot 47:1865–1870

    Article  CAS  Google Scholar 

  • Turroni S et al (2007) Oxalate consumption by lactobacilli: evaluation of oxalyl-CoA decarboxylase and formyl-CoA transferase activity in Lactobacillus acidophilus. J Appl Microbiol 103:1600–1609

    Article  CAS  PubMed  Google Scholar 

  • van Hees PAW, Jones DL, Godbold DL (2002) Biodegradation of low molecular weight organic acids in coniferous forest podzolic soils. Soil Biol Biochem 34:1261–1272

    Article  Google Scholar 

  • Verrecchia EP, Braissant O, Cailleau G (2006) 12. The oxalate–carbonate pathway in soil carbon storage: the role of fungi and oxalotrophic bacteria in biogeochemical cycles. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, New York, pp 289–310

  • Zwietering MH, Jongenburger I, Rombouts FM, van ‘t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Martin Clerc, Sabrina de los Rios, and N. Jeanneret (Université de Neuchâtel) for their help during the work. We would like to thank Cooperativa El Paraíso and the NGO “Racines” (Geneva, CH) who helped us studying in Bolivia, the Forest Service Office of Madhya Pradesh State and Pantnagar University in India, as well as Dr. Neree Onguene Awana and IRAD Yaoundé for their help during field campaign in Cameroon. This research was supported by the Swiss National Science Foundation through Grants K-23k1-118130/1 and CR22I2-137994, and the EU-FP7 project CO2SolStock, Grant Agreement No. 226306.

Conflict of interest

The authors declare that they have no conflict of interest to publish this manuscript. None commercial party is related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar Junier.

Additional information

Communicated by Jörg Overmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, D., Braissant, O., Cailleau, G. et al. Isolation and characterization of oxalotrophic bacteria from tropical soils. Arch Microbiol 197, 65–77 (2015). https://doi.org/10.1007/s00203-014-1055-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1055-2

Keywords

Navigation