Skip to main content
Log in

Isolation and characterization of a tetramethylammonium-degrading Methanococcoides strain and a novel glycine betaine-utilizing Methanolobus strain

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two novel strains of methanogens were isolated from an estuarine sediment with the capability to utilize quaternary amines. Based on the 16S rRNA analysis, strain B1d shared 99 % sequence identity with Methanolobus vulcani PL-12/MT and strain Q3c shared 99 % identity with Methanococcoides sp. PM1 and PM2, but our current isolates display clearly different capabilities of growth on quaternary amines and were isolated based on these capabilities. Strain Q3c was capable of growth on tetramethylammonium and choline, while strain B1d was capable of growth on glycine betaine. Ml. vulcani PL-12/MT was incapable of growth on glycine betaine, indicating an obvious distinction between strains B1d and PL-12/MT. Strain Q3c now represents the only known tetramethylammonium-utilizing methanogen in isolation. Strain B1d is the first quaternary amine-utilizing methanogen from the genus Methanolobus. This study suggests that quaternary amines may serve as ready precursors of biological methane production in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Asakawa S, Sauer K, Liesack W, Thauer RK (1998) Tetramethylammonium:coenzyme M methyltransferase system from Methanococcoides sp. Arch Microbiol 170:220–226. doi:10.1007/s002030050636

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Lindstrom EB, Nedwell DB, Balab MT (1981) Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment. Appl Environ Microbiol 42:985–992

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barceloux DG (2008) Medical toxicology of natural substances: foods, fungi, medicinal herbs, plants, and venomous animals. Wiley. doi:10.1002/9780470330319

  • Bose A, Pritchett MA et al (2008) Genetic analysis of the methanol- and methylamine-specific methyltransferase 2 genes of Methanosarcina acetivorans C2A. J Bacteriol 190:4017–4026. doi:10.1128/JB.00117-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burke SA, Krzycki JA (1995) Involvement of the “A” isozyme of methyltransferase II and the 29-kilodalton corrinoid protein in methanogenesis from monomethylamine. J Bacteriol 177:4410–4416

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burke SA, Krzycki JA (1997) Reconstitution of monomethylamine:coenzyme M methyl transfer with a corrinoid protein and two methyltransferases purified from Methanosarcina barkeri. J Biol Chem 272(26):16570–16577. doi:10.1074/jbc.272.26.16570

    Article  CAS  PubMed  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi:10.1128/AEM.03006-05

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG (2009) Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59:1064–1069. doi:10.1099/ijs.0.003772-0

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferguson DJ Jr, Krzycki JA (1997) Reconstitution of trimethylamine-dependent coenzyme M methylation with the trimethylamine corrinoid protein and the isozymes of methyltransferase II from Methanosarcina barkeri. J Bacteriol 179:846–852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferguson DJ Jr, Gorlatova N et al (2000) Reconstitution of dimethylamine:coenzyme M methyl transfer with a discrete corrinoid protein and two methyltransferases purified from Methanosarcina barkeri. J Biol Chem 275:29053–29060. doi:10.1074/jbc.M910219199

    Article  CAS  PubMed  Google Scholar 

  • Fiester SE, Evangelista SF, Arivett BA, Adams DJ, Redfern RE, Woolverton CJ (2014) The role of the liquid crystalline state in the bundling of Salmonella enterica serovar Typhimurium flagella. Liq Cryst 41:1277–1285. doi:10.1080/02678292.2014.919667

    Article  CAS  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, Conway de Macario E, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp.nov. Syst Appl Microbiol 15:573–581

  • Garcia-Maldonado JQ, Bebout BM, Celis LB, Lopez-Cortes A (2012) Phylogenetic diversity of methyl-coenzyme M reductase (mcrA) gene and methanogenesis from trimethylamine in hypersaline environments. Int Microbiol 15:33–41. doi:10.2436/20.1501.01.155

    CAS  PubMed  Google Scholar 

  • Gish W, States DJ (1993) Identification of protein coding regions by database similarity search. Nat Genet 3:266–272. doi:10.1038/ng0392-266

    Article  CAS  PubMed  Google Scholar 

  • Harms U, Weiss DS et al (1995) The energy conserving N5-methyltetrahydromethanopterin:coenzyme M methyltransferase complex from Methanobacterium thermoautotrophicum is composed of eight different subunits. Eur J Biochem 228:640–648. doi:10.1111/j.1432-1033.1995.0640m.x

    Article  CAS  PubMed  Google Scholar 

  • Heijthuijsen JHFG, Hansen TA (1989) Betaine fermentation and oxidation by marine Desulfuromonas strains. Appl Environ Microbiol 55:965–969

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kadam PC, Boone DR (1995) Physiological characterization and emended description of Methanolobus vulcani. Int J Syst Bacteriol 45:400–402

  • Kadam PC, Ranade DR, Mandelco L, Boone DR (1994) Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int J Syst Bacteriol 44:603–607

  • Kandeler E, Gerber H (1988) Short term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72. doi:10.1007/BF00257924

    CAS  Google Scholar 

  • King GM (1984) Utilization of hydrogen, acetate, and “non-competitive” substrates by methanogenic bacteria in marine sediments. Geomicrobiol J 3:276–301

    Article  Google Scholar 

  • Koenig H, Stetter KO (1982) Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Mikrobiol Hyg A 3:478–490

    CAS  Google Scholar 

  • Kremer JD, Cao X et al (1993) Isolation of two novel corrinoid proteins from acetate-grown Methanosarcina barkeri. J Bacteriol 175:4824–4833

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kristjansson JK, Schönheit P (1983) Why do sulfate-reducing bacteria outcompete methanogenic bacteria for substrates? Oecologia 60:264–266. doi:10.1007/BF00379530

    Article  Google Scholar 

  • Kumar S, Dagar SS, Puniya AK (2012) Isolation and characterization of methanogens from rumen of Murrah buffalo. Ann Microbiol 62:345–350. doi:10.1007/s13213-011-0268-8

    Article  CAS  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320. doi:10.1093/molbev/msn067

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Boone DR, Choy C (1990) Methanohalophilus oregonense sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40:111–116

  • L’Haridon SM, Chalopin MM et al (2014) Methanococcoides vulcani sp. nov., a novel marine methylotrophic methanogen; using betaine, choline, and N,N-dimethylethanolamine for methanogenesis, isolated from the Napoli Mud Volcano in the Eastern Mediterranean Sea; and emendation of the genus Methanococcoides. Int J Syst Evol Microbiol 64:1978–1983. doi:10.1099/ijs.0.058289-0

    Article  PubMed  Google Scholar 

  • Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol 43:1373–1379

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lyimo TJ, Pol A, Jetten MS, Op den Camp HJM (2009) Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiol Lett 291:247–253. doi:10.1111/j.1574-6968.2008.01464.x

  • Metcalf WW, Zhang JK et al (1997) A genetic system for Archaea of the genus Methanosarcina: liposome mediated transformation and construction of shuttle vectors. Proc Natl Acad Sci USA 94:2626–2631. doi:10.1073/pnas.94.6.2626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mochimaru H, Tanaki H, Hanada S, Imachi H, Nakamura K, Sakata S, Kamagata Y (2009) Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 59:714–728. doi:10.1099/ijs.0.001677-0

    Article  CAS  PubMed  Google Scholar 

  • Naumann E, Hippe H et al (1983) Betaine: new oxidant in the Stickland reaction and methanogenesis from betaine and l-alanine by a Clostridium sporogenes-Methanosarcina barkeri coculture. Appl Environ Microbiol 45:474–483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nei MKS (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Oremland RS, Boone DR (1994) Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol 44:573–575

  • Oremland RS, Marsh LM, Polcin S (1982) Methane production and simultaneous sulfate-reduction in anoxic, salt marsh sediments. Nature 296:143–145. doi:10.1038/296143a0

    Article  CAS  Google Scholar 

  • Oren A (1990) Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie Van Leeuwenhoek 58:291–298. doi:10.1007/BF00399342

    Article  CAS  PubMed  Google Scholar 

  • Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69:3181–3191. doi:10.1128/AEM.69.6.3181-3191.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothman DH, Fourier GP, French KL, Alm EJ, Boyle EA, Changqun C, Summons RE (2014) Methanogenic burst in the end-Permian carbon cycle. Proc Natl Acad Sci USA 111:5462–5487. doi:10.101073/pnas.1318106111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sauer K, Harms U et al (1997) Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Purification, properties and encoding genes of the corrinoid protein MT1. Eur J Biochem 243:670–677. doi:10.1111/j.142-1033.1997.t01-1-00670.x

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kendall MM, Liu YT, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538. doi:10.1099/ijs.0.63886-0

  • Sowers KR, Ferry JG (1983) Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 45:684–690

  • Tallant TC, Krzycki JA (1997) Methylthiol:coenzyme M methyltransferase from Methanosarcina barkeri, an enzyme of methanogenesis from dimethylsulfide and methylmercaptopropionate. J Bacteriol 179:6902–6911

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka K (1994) Anaerobic degradation of tetramethylammonium by a newly isolated marine methanogen. J Ferment Bioeng 78:386–388. doi:10.1016/0922-338X(94)90287-9

    Article  CAS  Google Scholar 

  • Tang WH, Wang Z et al (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 368:1575–1584. doi:10.1056/NEJMoa1109400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thauer RK, Kaster AK et al (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. doi:10.1038/nrmicro1931

    Article  CAS  PubMed  Google Scholar 

  • Ticak T, Kountz DJ, Girosky KE, Krzycki JA, Ferguson DJ Jr. (2014) A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase. Proc Nat Acad Sci USA. doi:10.1073/pnas.1409642111

  • Wall JS, Christianson DD, Dimler RJ, Senti FR (1960) Spectrophotometric determination of betaines and other quaternary nitrogen compounds as their periodides. Anal Chem 32:870–874

    Article  CAS  Google Scholar 

  • Wang Z, Klipfell E et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63. doi:10.1038/nature09922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Tang WH et al (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35:904–910. doi:10.1093/eurheartj/ehu002

    Article  CAS  PubMed  Google Scholar 

  • Watkins AJ, Roussel EG et al (2012) Choline and N,N-dimethylethanolamine as direct substrates for methanogens. Appl Environ Microbiol 78:8298–8303. doi:10.1128/AEM.01941-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watkins AJ, Roussel EG et al (2014) Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Appl Environ Microbiol 80:289–293. doi:10.1128/AEM.03076-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Webster GPR, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:65–85. doi:10.1111/j.1574-6941.2006.00147.x

    Article  CAS  PubMed  Google Scholar 

  • Welander PV, Metcalf WW (2005) Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. Proc Natl Acad Sci USA 102:10664–10669. doi:10.1073/pnas.0502623102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Welander PV, Metcalf WW (2008) Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway. J Bacteriol 190:1928–1936. doi:10.1128/JB.01424-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitman W, Bowen TL, Boone DR (2006) The methanogenic bacteria. Prokaryotes 3:165–207. doi:10.1007/0-387-30743-5_9

    Article  Google Scholar 

  • Winfrey MR, Nelson DR et al (1977) Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments. Appl Environ Microbiol 33:312–318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ziegler C, Bremer E et al (2010) The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 78:13–34. doi:10.1111/j.1365-2958.2010.07332.x

    CAS  PubMed  Google Scholar 

  • Zhang G, Jiang N, Liu X, Dong X (2008) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 74:6114-6120. doi:10.1128/AEM.01146-08

Download references

Acknowledgments

We would like to thank Dr. Richard Edelman and Mr. Matt Duley at the Center for Advanced Microscopy and Imaging at Miami University for helpful assistance with microscopy. We would like to thank Dr. Andor Kiss and Ms. Xiaoyun Deng in the Center for Bioinformatics and Functional Genomics for assistance with instrumentation and DNA sequencing. We thank Dr. Catherine Almquist at Miami University for the use of her GC. We thank Dr. Joe Krzycki for many helpful discussions and for critical review of the manuscript. We would like to thank Mr. Daniel Fleming for gathering the sediment at the Southwest Branch Back River. This project was supported by a National Science Foundation Research Experiences for Undergraduates site grant to Miami University (project DBI-1156703). An award given to Dr. Luis Actis at Miami University from Illumina supported sequencing of the genomes. Miami University, Hamilton, and the Department of Microbiology, Miami University, also provided funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald J. Ferguson Jr..

Additional information

Communicated by Harald Huber.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ticak, T., Hariraju, D., Arcelay, M.B. et al. Isolation and characterization of a tetramethylammonium-degrading Methanococcoides strain and a novel glycine betaine-utilizing Methanolobus strain. Arch Microbiol 197, 197–209 (2015). https://doi.org/10.1007/s00203-014-1043-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-014-1043-6

Keywords

Navigation