Skip to main content
Log in

Probiotic Bacillus amyloliquefaciens mediate M1 macrophage polarization in mouse bone marrow-derived macrophages

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Depending on the microenvironment, macrophages can acquire distinct functional phenotypes, referred to as classically activated M1 and M2. M1 macrophages are considered potent effector cells that kill intracellular pathogens, and M2 macrophages promote the resolution of wound healing. In this study, we are interested to know whether probiotic Bacillus amyloliquefaciens (Ba) can induce macrophages polarization. Real-time fluorescence PCR analysis demonstrated that the expression of IL-1β, iNOS, TNF-α and IL-6 genes for M1 macrophages was significantly increased at 1.5 h after probiotic Ba treatment compared to the probiotic Ba-free treatment (P < 0.01), whereas the expression of M2 macrophage marker genes (Arg1, Fizz1, MR, Ym1) was decreased (P < 0.05). Furthermore, the phagocytic activity was dramatically increased in the Ba-treated BMDMs using a FITC-dextran endocytosis assay. Together, these findings indicated that probiotic Ba facilitated polarization of M1 macrophages and enhanced its phagocytic capacity. The results expanded our knowledge about probiotic function-involved macrophage polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ba:

Bacillus amyloliquefaciens

NO:

Nitric oxide

DMEM:

Dulbecco’s modified Eagle’s medium

MFI:

Mean fluorescence intensity

BMDMs:

Bone marrow-derived macrophages

FACS:

Flow cytometry

References

  • Acheson DW, Luccioli S (2004) Microbial-gut interactions in health and disease. Mucosal immune responses. Best Pract Res Clin Gastroenterol 18:387–404

    Article  PubMed  CAS  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    PubMed  CAS  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  PubMed  CAS  Google Scholar 

  • Brown KL, Christenson K, Karlsson A, Dahlgren C, Bylund J (2009) Divergent effects on phagocytosis by macrophage-derived oxygen radicals. J Innate Immun 1:592–598

    Article  PubMed  CAS  Google Scholar 

  • Cheung QC, Yuan Z, Dyce PW, Wu D, DeLange K, Li J (2009) Generation of epidermal growth factor-expressing Lactococcus lactis and its enhancement on intestinal development and growth of early-weaned mice. Am J Clin Nutr 89:871–879

    Article  PubMed  CAS  Google Scholar 

  • Christensen HR, Frokiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168:171–178

    PubMed  CAS  Google Scholar 

  • Cross ML, Ganner A, Teilab D, Fray LM (2004) Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunol Med Microbiol 42:173–180

    Article  PubMed  CAS  Google Scholar 

  • Dugas B, Mercenier A, Lenoir-Wijnkoop I, Arnaud C, Dugas N, Postaire E (1999) Immunity and probiotics. Immunol Today 20:387–390

    Article  PubMed  CAS  Google Scholar 

  • Fairbrother JM, Nadeau E, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6:17–39

    Article  PubMed  CAS  Google Scholar 

  • Fairweather D, Cihakova D (2009) Alternatively activated macrophages in infection and autoimmunity. J Autoimmun 33:222–230

    Article  PubMed  CAS  Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Higgins SE et al (2007) Effect of probiotic treatment in broiler chicks on intestinal macrophage numbers and phagocytosis of Salmonella enteritidis by abdominal exudate cells. Poult Sci 86:2315–2321

    Article  PubMed  CAS  Google Scholar 

  • Kim DW et al (2007a) Comparison of cytokine and nitric oxide induction in murine macrophages between whole cell and enzymatically digested Bifidobacterium sp. obtained from monogastric animals. J Microbiol 45:305–310

    PubMed  CAS  Google Scholar 

  • Kim DW et al (2007b) Induction of cytokines and nitric oxide in murine macrophages stimulated with enzymatically digested lactobacillus strains. J Microbiol 45:373–378

    PubMed  CAS  Google Scholar 

  • Krausgruber T et al (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12:231–238

    Article  PubMed  CAS  Google Scholar 

  • Lin WH, Yu B, Lin CK, Hwang WZ, Tsen HY (2007) Immune effect of heat-killed multistrain of Lactobacillus acidophilus against Salmonella typhimurium invasion to mice. J Appl Microbiol 102:22–31

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  PubMed  CAS  Google Scholar 

  • Marranzino G, Villena J, Salva S, Alvarez S (2012) Stimulation of macrophages by immunobiotic Lactobacillus strains: influence beyond the intestinal tract. Microbiol Immunol 56:771–781

    Article  PubMed  CAS  Google Scholar 

  • Medici M, Vinderola CG, Weill R, Perdigon G (2005) Effect of fermented milk containing probiotic bacteria in the prevention of an enteroinvasive Escherichia coli infection in mice. J Dairy Res 72:243–249

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  PubMed  CAS  Google Scholar 

  • Morita H et al (2002) Cytokine production by the murine macrophage cell line J774.1 after exposure to lactobacilli. Biosci Biotechnol Biochem 66:1963–1966

    Article  PubMed  CAS  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  PubMed  CAS  Google Scholar 

  • Nair MG et al (2005) Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen-presenting cells. Infect Immun 73:385–394

    Article  PubMed  CAS  Google Scholar 

  • Nair MG, Guild KJ, Artis D (2006) Novel effector molecules in type 2 inflammation: lessons drawn from helminth infection and allergy. J Immunol 177:1393–1399

    PubMed  CAS  Google Scholar 

  • Oggioni MR, Ciabattini A, Cuppone AM, Pozzi G (2003) Bacillus spores for vaccine delivery. Vaccine 21(Suppl 2):S96–S101

    Article  PubMed  Google Scholar 

  • Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci U S A 107:454–459

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Ji GE, Ko YT, Jung HK, Ustunol Z, Pestka JJ (1999) Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int J Food Microbiol 46:231–241

    Article  PubMed  CAS  Google Scholar 

  • Satoh T et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11:936–944

    Article  PubMed  CAS  Google Scholar 

  • Schulz C et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  PubMed  CAS  Google Scholar 

  • Selvam R et al (2009) Effect of Bacillus subtilis PB6, a natural probiotic on colon mucosal inflammation and plasma cytokines levels in inflammatory bowel disease. Indian J Biochem Biophys 46:79–85

    PubMed  CAS  Google Scholar 

  • Takeda N et al (2010) Differential activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO homeostasis. Genes Dev 24:491–501

    Article  PubMed  CAS  Google Scholar 

  • Toure Y, Ongena M, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96:1151–1160

    Article  PubMed  CAS  Google Scholar 

  • Tripathi S, Bruch D, Kittur DS (2008) Ginger extract inhibits LPS induced macrophage activation and function. BMC Complem Altern Med 8:1

    Article  CAS  Google Scholar 

  • Wang D et al (2010) Ras-related protein Rab10 facilitates TLR4 signaling by promoting replenishment of TLR4 onto the plasma membrane. Proc Natl Acad Sci USA 107:13806–13811

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, He F, Kawase M, Miyazawa K, Hiramatsu M (2012) Oral administration of Lactobacillus gasseri TMC0356 stimulates peritoneal macrophages and attenuates general symptoms caused by enteropathogenic Escherichia coli infection. J Microbiol Immunol Infect. doi:10.1016/j.jmii.2012.08.013

  • Zhang Z, Zhang ZY, Schluesener HJ (2009) Compound A, a plant origin ligand of glucocorticoid receptors, increases regulatory T cells and M2 macrophages to attenuate experimental autoimmune neuritis with reduced side effects. J Immunol 183:3081–3091

    Article  PubMed  CAS  Google Scholar 

  • Zhang GQ, Bao P, Zhang Y, Deng AH, Chen N, Wen TY (2011) Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Anal Biochem 409:130–137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Linrong Lu (Zhejiang University School of Medicine) for generous support and insightful guidance. This work was supported by the grants from the national 863 project (2013AA102803D) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20110101110101).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Fen Li.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, J., Hu, SL., Cui, ZW. et al. Probiotic Bacillus amyloliquefaciens mediate M1 macrophage polarization in mouse bone marrow-derived macrophages. Arch Microbiol 195, 349–356 (2013). https://doi.org/10.1007/s00203-013-0877-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0877-7

Keywords

Navigation