Skip to main content
Log in

Knockout of fatty acid desaturase genes in Pichia pastoris GS115 and its effect on the fatty acid biosynthesis and physiological consequences

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Unsaturated fatty acids (UFAs), including oleic acid (OA, C18:1n-9), linoleic acid (LA, C18:2n-6) and α-linolenic acid (ALA, C18:3n-3), are major components of membrane lipids in Pichia pastoris GS115. In order to clarify the biosynthesis pathway of UFAs on the molecular level and investigate their possible roles in growth and development of this strain, we here report modified strains with disrupted desaturase gene by homologous recombination. Gas chromatography analysis of fatty acid composition in the corresponding mutants confirmed that ∆12-desaturase encoded by Fad12 was responsible for the formation of LA, and ALA was synthesized by ∆15-desaturase encoded by Fad15. Simultaneous deletion of Fad9A and Fad9B was lethal and supplementation of OA could restore growth, indicating that possibly both Fad9A and Fad9B encoded ∆9-desaturase that converted SA into OA. Phenotypic analysis demonstrated that wild type and Fad15 mutant grew at almost the same rate, Fad12 mutant grew much slower than these two strains. Moreover, OA was positively correlated to cold tolerance and ethanol tolerance of GS115, whereas LA and ALA did not affect cold tolerance and ethanol tolerance of it. In addition, we showed that tolerance of GS115 to high concentration of methanol was independent of these three UFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALA:

α-Linolenic acid

LA:

Linoleic acid

OA:

Oleic acid

UFA:

Unsaturated fatty acid

References

  • Alexandre H, Rousseaux I, Charpentier C (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol Lett 124:17–22

    Article  PubMed  CAS  Google Scholar 

  • Al-Fageeh MB, Smales CM (2006) Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 397:247–259

    Article  PubMed  CAS  Google Scholar 

  • Brenner RR (2003) Hormonal modulation of delta 6 and delta 5 desaturases: case of diabetes. Prostaglandins Leukot Essent Fatty Acids 68:151–162

    Article  PubMed  CAS  Google Scholar 

  • Chang PK, Wilson R, Keller N, Cleveland T (2004) Deletion of the delta 12-oleic acid desaturase gene of a nonaflatoxigenic Aspergillus parasiticus field isolate affects conidiation and sclerotial development. J Appl Microbiol 97:1178–1184

    Article  PubMed  CAS  Google Scholar 

  • Clamp A, Ladha S, Clark D, Grimble R, Lund E (1997) The influence of dietary lipids on the composition and membrane fluidity of rat hepatocyte plasma membrane. Lipids 32:179–184

    Article  PubMed  CAS  Google Scholar 

  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouzé P, Van de Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  PubMed  Google Scholar 

  • Evans GW, Bowman TD (1992) Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem 46:243–250

    Article  PubMed  CAS  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  PubMed  CAS  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hossain MS, Yamasaki H, Yazawa K, Masumura S (1999) Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Heipieper HJ, Isken S, Saliola M (2000) Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis. Res Microbiol 151:777–784

    Article  PubMed  CAS  Google Scholar 

  • Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70:361–372

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Dobrzyn A, Dobrzyn P, Rahman SM, Miyazaki M, Ntambi JM (2004) Lack of stearoyl-CoA desaturase 1 upregulates basal thermogenesis but causes hypothermia in a cold environment. J Lipid Res 45:1674–1682

    Article  PubMed  CAS  Google Scholar 

  • Lounds C, Eagles J, Carter A, MacKenzie D, Archer D (2007) Spore germination in Mortierella alpina is associated with a transient depletion of arachidonic acid and induction of fatty acid desaturase gene expression. Arch Microbiol 188:299–305

    Article  PubMed  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  PubMed  CAS  Google Scholar 

  • Mauvoisin D, Prévost M, Ducheix S, Arnaud MP, Mounier C (2010) Key role of the ERK1/2 MAPK pathway in the transcriptional regulation of the Stearoyl-CoA Desaturase (SCD1) gene expression in response to leptin. Mol Cell Endocrinol 319:116–128

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki M, Man WC, Ntambi JM (2001) Targeted disruption of stearoyl-CoA desaturase 1 gene in mice causes atrophy of sebaceous and meibomian glands and depletion of wax esters in the eyelid. J Nutr 131:2260–2268

    PubMed  CAS  Google Scholar 

  • Murayama SY, Negishi Y, Umeyama T, Kaneko A, Oura T, Niimi M, Ubukata K, Kajiwara S (2006) Construction and functional analysis of fatty acid desaturase gene disruptants in Candida albicans. Microbiology 152:1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Nakamura MT, Nara TY (2004) Structure, function, and dietary regulation of delta 6, delta 5, and delta 9 desaturases. Nutrition 24:345–376

    Article  CAS  Google Scholar 

  • Romanos M (1995) Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol 6:527–533

    Article  CAS  Google Scholar 

  • Sampath H, Ntambi JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25:317–340

    Article  PubMed  CAS  Google Scholar 

  • Schujman GE, Mendoza D (2005) Transcriptional control of membrane lipid synthesis in bacteria. Curr Opin Microbiol 8:149–153

    Article  PubMed  CAS  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265:20144–20149

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Yahagi N, Izumida Y et al (2010) Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit. J Biol Chem 285:11681–11691

    Article  PubMed  CAS  Google Scholar 

  • Thijssen MAMA, Hornstra G, Mensink RP (2005) Stearic, oleic, and linoleic acids have comparable effects on markers of thrombotic tendency in healthy human subjects. J Nutr 135:2805–2811

    PubMed  CAS  Google Scholar 

  • Wada H, Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Wilson RA, Calvo AM, Chang PK, Keller NP (2004a) Characterization of the Aspergillus parasiticus delta 12-desaturase gene: a role for lipid metabolism in the Aspergillus–seed interaction. Microbiology 150:2881–2888

    Article  PubMed  CAS  Google Scholar 

  • Wilson RA, Chang PK, Dobrzyn A, Ntambi JM, Zarnowski R, Keller NP (2004b) Two delta 9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Fungal Genet Biol 41:501–509

    Article  PubMed  CAS  Google Scholar 

  • Zamaria N (2004) Alteration of polyunsaturated fatty acid status and metabolism in health and disease. Reprod Nutr Dev 44:273–282

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li M, Wei D, Wang X, Chen X, Xing L (2007) Disruption of the fatty acid delta 6-desaturase gene in the oil-producing fungus Mortierella isabellina by homologous recombination. Curr Microbiol 55:128–134

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (No. 31270096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chun Li.

Additional information

Communicated by Reinhard Kraemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, AQ., Zhu, JC., Zhang, B. et al. Knockout of fatty acid desaturase genes in Pichia pastoris GS115 and its effect on the fatty acid biosynthesis and physiological consequences. Arch Microbiol 194, 1023–1032 (2012). https://doi.org/10.1007/s00203-012-0835-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0835-9

Keywords

Navigation