Skip to main content
Log in

(R)-Cysteate-nitrogen assimilation by Cupriavidus necator H16 with excretion of 3-sulfolactate: a patchwork pathway

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cupriavidus necator H16 grew exponentially with (R)-cysteate, a structural analogue of aspartate, as sole source of nitrogen in succinate-salts medium. Utilization of cysteate was quantitative and concomitant with growth and with the excretion of the deaminated product (R)-sulfolactate, which was identified thoroughly. The deaminative pathway started with transport of (R)-cysteate into the cell, which we attributed to an aspartate transporter. Transamination to sulfopyruvate involved an aspartate/(R)-cysteate:2-oxoglutarate aminotransferase (Aoa/Coa) and regeneration of the amino group acceptor by NADP+-coupled glutamate dehydrogenase. Reduction of sulfopyruvate to (R)-sulfolactate was catalyzed by a (S)-malate/(R)-sulfolactate dehydrogenase (Mdh/Sdh). Excretion of the sulfolactate could be attributed to the sulfite/organosulfonate exporter TauE, which was co-encoded and co-expressed, with sulfoacetaldehyde acetyltransferase (Xsc), though Xsc was irrelevant to the current pathway. The metabolic enzymes could be assayed biochemically. Aoa/Coa and Mdh/Sdh were highly enriched by protein separation, partly characterized, and the relevant locus-tags identified by peptide-mass fingerprinting. Finally, RT-PCR was used to confirm the transcription of all appropriate genes. We thus demonstrated that Cupriavidus necator H16 uses a patchwork pathway by recruitment of ‘housekeeping’ genes and sulfoacetaldehyde-degradative genes to scavenge for (R)-cysteate-nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RT-PCR:

Reverse-transcription PCR

SDS-PAGE:

Sodium dodecylsulfate polyacrylamide gel electrophoresis

MALDI-TOF:

Matrix-assisted laser desorption time of flight (mass spectrometry)

Mdh/Sdh:

(S)-malate/(R)-sulfolactate dehydrogenase

Aoa/Coa:

Aspartate/(R)-cysteate:2-oxoglutarate aminotransferase

Gdh:

Glutamate dehydrogenase

TauE:

Sulfite/organosulfonate exporter

Xsc:

Sulfoacetaldehyde acetyltransferase

Pta:

Phosphotransacetylase

References

  • Andrews S, Schmidt CLA (1927) Titration curves of taurine and of cysteic acid. J Biol Chem 73:651–654

    CAS  Google Scholar 

  • Benning C (2007) Questions remaining in sulfolipid biosynthesis: a historical perspective. Photosynth Res 92:199–203

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU, Beutler H-O (1984) Ammonia. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Verlag Chemie, Weinheim, pp 454–461

    Google Scholar 

  • Bonsen PPM, Spudich JA, Nelson DL, Kornberg A (1969) Biochemical studies of bacterial sporulation and germination. XII. A sulfonic acid as a major sulfur compound of Bacillus subtilis spores. J Bacteriol 98:62–68

    PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chien C-C, Leadbetter ER, Godchaux W III (1995) Sulfonate-sulfur can be assimilated for fermentative growth. FEMS Microbiol Lett 129:189–194

    Article  CAS  Google Scholar 

  • Consden R, Gordon AH, Martin AJP (1946) The identification of amino-acids derived from cysteine in chemically modified wool. Biochem. J. 40:580–582

    CAS  Google Scholar 

  • Cook AM (1987) Biodegradation of s-triazine xenobiotics. FEMS Microbiol Rev 46:93–116

    Article  CAS  Google Scholar 

  • Cook AM, Denger K (2002) Dissimilation of the C2 sulfonates. Arch Microbiol 179:1–6

    Article  PubMed  CAS  Google Scholar 

  • Cook AM, Hütter R (1981) s-Triazines as nitrogen sources for bacteria. J Agric Food Chem 29:1135–1143

    Article  CAS  Google Scholar 

  • Denger K, Cook AM (2010) Racemase activity effected by two dehydrogenases in sulfolactate degradation by Chromohalobacter salexigens: purification of (S)-sulfolactate dehydrogenase. Microbiology (Reading, UK) 156:967–974

  • Denger K, Laue H, Cook AM (1997) Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology (Reading, UK) 143:1919–1924

  • Denger K, Ruff J, Rein U, Cook AM (2001) Sulfoacetaldehyde sulfo-lyase [EC 4.4.1.12] from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem. J. 357:581–586

    Article  PubMed  CAS  Google Scholar 

  • Denger K, Weinitschke S, Hollemeyer K, Cook AM (2004) Sulfoacetate generated by Rhodopseudomonas palustris from taurine. Arch Microbiol 182:254–258

    Article  PubMed  CAS  Google Scholar 

  • Denger K, Smits THM, Cook AM (2006) L-Cysteate sulfo-lyase, a widespread, pyridoxal 5’-phosphate-coupled desulfonative enzyme purified from Silicibacter pomeroyi DSS-3T. Biochem. J. 394:657–664

    Article  PubMed  CAS  Google Scholar 

  • Denger K, Mayer J, Buhmann M, Weinitschke S, Smits THM, Cook AM (2009) Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfo-lyase. J Bacteriol 191:5648–5656

    Article  PubMed  CAS  Google Scholar 

  • Denger K, Lehmann S, Cook AM (2011) N-Acetyltaurine degraded by Cupriavidus necator H16: purification of N-acetyltaurine amidohydrolase. Microbiology (Reading, UK) 157:2983–2991

  • Essenberg RC (1984) Use of homocysteic acid for selecting mutants at the gltS locus of Escherichia coli K12. J Gen Microbiol 130:1311–1314

    PubMed  CAS  Google Scholar 

  • Fischer FG, Brander J (1960) Eine Analyse der Gespinste der Kreuzspinne. Hoppe Seylers Z. Physiol. Chem. 320:92–102

    Article  PubMed  CAS  Google Scholar 

  • Godchaux W III, Leadbetter ER (1980) Capnocytophaga spp. contain sulfonolipids that are novel in procaryotes. J Bacteriol 144:592–602

    PubMed  CAS  Google Scholar 

  • Graham DE, White RH (2002) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19:133–147

    Article  PubMed  CAS  Google Scholar 

  • Graham DE, Taylor SM, Wolf RZ, Namboori SC (2009) Convergent evolution of coenzyme M biosynthesis in the Methanosarcinales: cysteate synthase evolved from an ancestral threonine synthase. Biochem J 424:467–478

    Article  PubMed  CAS  Google Scholar 

  • Helgadóttir S, Rosas-Sandoval G, Soll D, Graham DE (2007) Biosynthesis of phosphoserine in the Methanococcales. J Bacteriol 189:575–582

    Article  PubMed  Google Scholar 

  • Ito K (1969) Free amino acids and peptides in marine algae. Bull Jpn Soc Sci Fish 35:116–129

    Article  CAS  Google Scholar 

  • Junker F, Field JA, Bangerter F, Ramsteiner K, Kohler H-P, Joannou CL, Mason JR, Leisinger T, Cook AM (1994) Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem J 300:429–436

    PubMed  CAS  Google Scholar 

  • Koshikawa T, Nakashio S, Kusuyama K, Ichikawa T, Kondo M (1981) Presence of cysteic acid in the sporangium and its metabolic pathway during sporulation of Bacillus subtilis NRRL B558. J Gen Microbiol 124:415–423

    CAS  Google Scholar 

  • Krejčík Z, Denger K, Weinitschke S, Hollemeyer K, Pačes V, Cook AM, Smits THM (2008) Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 190:159–168

    Article  PubMed  Google Scholar 

  • Krejčík Z, Hollemeyer K, Smits THM, Cook AM (2010) Isethionate formation from taurine in Chromohalobacter salexigens: purification of sulfoacetaldehyde reductase. Microbiology (Reading, UK) 156:1547–1555

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London, UK) 227:680–685

    Google Scholar 

  • Laue H, Denger K, Cook AM (1997a) Fermentation of cysteate by a sulfate-reducing bacterium. Arch Microbiol 168:210–214

    Article  CAS  Google Scholar 

  • Laue H, Denger K, Cook AM (1997b) Taurine reduction in anaerobic respiration of Bilophila wadsworthia RZATAU. Appl Environ Microbiol 63:2016–2021

    PubMed  CAS  Google Scholar 

  • Lie TJ, Pitta T, Leadbetter ER, Godchaux W III, Leadbetter JR (1996) Sulfonates: novel electron acceptors in anaerobic respiration. Arch Microbiol 166:204–210

    Article  PubMed  CAS  Google Scholar 

  • Lorca G, Winnen B, Saier MH Jr (2003) Identification of the L-aspartate transporter in Bacillus subtilis. J Bacteriol 185:3218–3222

    Article  PubMed  CAS  Google Scholar 

  • Mayer J, Cook AM (2009) Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol 191:6052–6058

    Article  PubMed  CAS  Google Scholar 

  • Mayer J, Denger K, Kaspar K, Hollemeyer K, Smits THM, Huhn T, Cook AM (2008) Assimilation of homotaurine-nitrogen by Burkholderia sp. and excretion of sulfopropanoate. FEMS Microbiol Lett 279:77–82

    Article  PubMed  CAS  Google Scholar 

  • Mikosch C, Denger K, Schäfer E-M, Cook AM (1999) Anaerobic oxidations of cysteate: degradation via a cysteate:2-oxoglutarate aminotransferase in Paracoccus pantotrophus. Microbiology (Reading, UK) 145:1153–1160

  • Palmieri F, Stipani I, Iacobazzi V (1979) The transport of L-cysteinesulfinate in rat liver mitochondria. Biochim Biophys Acta 555:531–546

    Article  PubMed  CAS  Google Scholar 

  • Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voß I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262

    Article  PubMed  Google Scholar 

  • Rein U, Gueta R, Denger K, Ruff J, Hollemeyer K, Cook AM (2005) Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology (Reading, UK) 151:737–747

  • Roy AB, Hewlins MJE, Ellis AJ, Harwood JL, White GF (2003) Glycolytic breakdown of sulfoquinovose in bacteria: a missing link in the sulfur cycle. Appl Environ Microbiol 69:6434–6441

    Article  PubMed  CAS  Google Scholar 

  • Sanger F (1945) The free amino groups of insulin. Biochem. J. 39:507–515

    CAS  Google Scholar 

  • Schellenberg GD, Furlong CE (1977) Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J Biol Chem 252:9055–9064

    PubMed  CAS  Google Scholar 

  • Schmidt E (1974) Glutamat-dehydrogenase UV-test. In: Bergmeyer HU (ed) Methoden der enzymatischen analyse. Verlag Chemie, Weinheim, pp 689–696

    Google Scholar 

  • Seitz AP, Leadbetter ER, Godchaux W III (1993) Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas acidovorans. Arch Microbiol 159:440–444

    Article  CAS  Google Scholar 

  • Shibuya I, Yagi T, Benson AA (1963) Sulfonic acids in algae. In: Japanese-Society-of-Plant-Physiologists (ed) Studies on microalgae and photosynthetic bacteria. The University of Tokyo Press, Tokyo, pp 627–636

  • Singh B, Röhm KH (2008) Characterization of a Pseudomonas putida ABC transporter (AatJMQP) required for acidic amino acid uptake: biochemical properties and regulation by the Aau two-component system. Microbiology (Reading, UK) 154:797–809

  • Sörbo B (1987) Sulfate: turbidimetric and nephelometric methods. Methods Enzymol 143:3–6

    Article  PubMed  Google Scholar 

  • Stapley EO, Starkey RL (1970) Decomposition of cysteic acid and taurine by soil microorganisms. J Gen Microbiol 64:77–84

    Article  CAS  Google Scholar 

  • Thurnheer T, Köhler T, Cook AM, Leisinger T (1986) Orthanilic acid and analogues as carbon sources for bacteria: growth physiology and enzymic desulphonation. J Gen Microbiol 132:1215–1220

    CAS  Google Scholar 

  • Weinitschke S, Denger K, Cook AM, Smits THM (2007) The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2-sulfonates. Microbiology (Reading, UK) 153:3055–3060

  • Weinitschke S, Hollemeyer K, Kusian B, Bowien B, Smits THM, Cook AM (2010a) Sulfoacetate is degraded via a novel pathway involving sulfoacetyl-CoA and sulfoacetaldehyde in Cupriavidus necator H16. J Biol Chem 285:35249–35254

    Article  PubMed  CAS  Google Scholar 

  • Weinitschke S, Sharma PI, Stingl U, Cook AM, Smits THM (2010b) Gene clusters involved in isethionate degradation in terrestrial and marine bacteria. Appl Environ Microbiol 76:618–621

    Article  PubMed  CAS  Google Scholar 

  • Weinstein CL, Griffith OW (1988) Cysteinesulfonate and β-sulfopyruvate metabolism. Partitioning between decarboxylation, transamination, and reduction pathways. J Biol Chem 263:3735–3743

    PubMed  CAS  Google Scholar 

  • White RH (1984) Biosynthesis of the sulfonolipid 2-amino-3-hydroxy-15-methylhexadecane-1-sulfonic acid in the gliding bacterium Cytophaga johnsonae. J Bacteriol 159:42–46

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Alexandra Roth, Janina von Watzdorf, Onur Yücel and Susanne Wörner who generated data during advanced practical courses, and to the late Botho Bowien for kindly providing C. necator H16. The work was funded by the German Research Foundation (DFG: CO 206/7-1 to AMC and Theo H. M. Smits, and SCHL 1936/1-1 to DS) and by the University of Konstanz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alasdair M. Cook.

Additional information

Communicated by Ursula Priefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, J., Denger, K., Hollemeyer, K. et al. (R)-Cysteate-nitrogen assimilation by Cupriavidus necator H16 with excretion of 3-sulfolactate: a patchwork pathway. Arch Microbiol 194, 949–957 (2012). https://doi.org/10.1007/s00203-012-0825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0825-y

Keywords

Navigation