Skip to main content
Log in

Determination of zeta potential in Planctomycetes and its application in heavy metals toxicity assessment

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Zeta potential of Planctomycetes was evaluated under different environmental conditions and correlated to cell viability. Phylogenetically distinct strains of the Planctomycetes presented different negative zeta potential values. More negative values were associated with Rhodopirellula spp. and related to the great amount of fimbriae in these species. Milli-Q water was chosen as the best dispersion media to perform the measurements. Zeta potential increased with ionic strength and varied with pH. In the physiological range of pH 5.0–9, zeta potential remained low and Rhodopirellula sp. strain LF2 cells were viable. Out of this range, zeta potential increased significantly and viability decreased. The effect on zeta potential of arsenic, cadmium, chromium, copper, lead, nickel, and zinc was assessed in Rhodopirellula sp. strain LF2. Zeta potential increased with increasing toxicity of the heavy metals in a dose–response way. This result was confirmed by the results observed for Rhodopirellula baltica strain SH1 under copper toxicity. Lead was the most toxic metal and zinc was the least toxic as observed by zeta potential and viability. The results support a correlation between zeta potential and cell viability which seem to indicate the possibility to use it as a viability predictor for the effects of heavy metals toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bayer ME, Sloyer JL Jr (1990) The electrophoretic mobility of gram-negative and gram-positive bacteria: an electrokinetic analysis. J Gen Microbiol 136:867–874

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson MM, Ovreas L (2010) Planctomycetes dominate biofilms on surfaces of the kelp laminaria hyperborea. BMC Microbiol 10:261

    Article  PubMed  Google Scholar 

  • Buckley DH, Huangyutitham V, Nelson TA, Rumberger A, Thies JE (2006) Diversity of planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 72:4522–4531

    Article  CAS  PubMed  Google Scholar 

  • Bundeleva IA, Shirokova LS, Benezeth P, Pokrovsky OS, Kompantseva EI, Balor S (2011) Zeta potential of anoxygenic phototrophic bacteria and ca adsorption at the cell surface: possible implications for cell protection from caco3 precipitation in alkaline solutions. J Colloid Interface Sci 360:100–109

    Article  CAS  PubMed  Google Scholar 

  • Chang YI, Hsieh CY (1991) The effect of cationic electrolytes on the electrophoretic properties of bacterial cells. Colloids Surf 53:21–31

    Article  CAS  Google Scholar 

  • Chen P, Ting YP (1995) Effect of heavy metal uptake on the electrokinetic properties of saccharomyces cerevisiae. Biotechnol Lett 17:107–112

    Article  CAS  Google Scholar 

  • Ciesla J, Bieganowski A, Janczarek M, Urbanik-Sypniewska T (2011) Determination of the electrokinetic potential of rhizobium leguminosarum bv trifolii rt24.2 using laser doppler velocimetry–a methodological study. J Microbiol Methods 85:199–205

    Article  PubMed  Google Scholar 

  • Collins YE, Stotzky G (1992) Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals. Appl Environ Microbiol 58:1592–1600

    CAS  PubMed  Google Scholar 

  • Dedysh SN, Pankratov TA, Belova SE, Kulichevskaya IS, Liesack W (2006) Phylogenetic analysis and in situ identification of bacteria community composition in an acidic sphagnum peat bog. Appl Environ Microbiol 72:2110–2117

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Franks DG, Alldredge L (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • Eboigbodin KE, Newton JR, Routh AF, Biggs CA (2006) Bacterial quorum sensing and cell surface electrokinetic properties. Appl Microbiol Biotechnol 73:669–675

    Article  CAS  PubMed  Google Scholar 

  • Fuerst JA (2006) Membrane-bounded nucleoids and pirellulosomes of planctomycetes. In: Shively JM (ed) Complex intracellular structures in prokaryotes. Springer, Berlin

    Google Scholar 

  • Fuerst JA, Gwilliam HG, Lindsay M, Lichanska A, Belcher C, Vickers JE, Hugenholtz P (1997) Isolation and molecular identification of planctomycete bacteria from postlarvae of the giant tiger prawn, penaeus monodon. Appl Environ Microbiol 63:254–262

    CAS  PubMed  Google Scholar 

  • Fukunaga Y, Kurahashi M, Sakiyama Y, Ohuchi M, Yokota A, Harayama S (2009) Phycisphaera mikurensis gen. Nov., sp. Nov., isolated from a marine alga, and proposal of phycisphaeraceae fam. Nov., phycisphaerales ord. Nov. And phycisphaerae classis nov. In the phylum planctomycetes. J Gen Appl Microbiol 55:267–275

    Article  CAS  PubMed  Google Scholar 

  • Glockner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, Gade D, Beck A, Borzym K, Heitmann K, Rabus R, Schlesner H, Amann R, Reinhardt R (2003) Complete genome sequence of the marine planctomycete pirellula sp. Strain 1. P Natl Acad Sci USA 100:8298–8303

    Article  CAS  Google Scholar 

  • Hayashi H, Tsuneda S, Hirata A, Sasaki H (2001) Soft particle analysis of bacterial cells and its interpretation of cell adhesion behaviors in terms of dlvo theory. Colloids surf B Biointerfaces 22:149–157

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Seiki H, Tsuneda S, Hirata A, Sasaki H (2003) Influence of growth phase on bacterial cell electrokinetic characteristics examined by soft particle electrophoresis theory. J Colloid Interface Sci 264:565–568

    Article  CAS  PubMed  Google Scholar 

  • Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Hughes MN, Poole RK (1989) Metals and micro-organisms, 1st edn. Chapman and Hall, New York

    Google Scholar 

  • Khunjar WO, Love NG (2011) Sorption of carbamazepine, 17alpha-ethinylestradiol, iopromide and trimethoprim to biomass involves interactions with exocellular polymeric substances. Chemosphere 82:917–922

    Article  CAS  PubMed  Google Scholar 

  • König E, Schlesner H, Hirsch P (1984) Cell wall studies on budding bacteria of the planctomyces/pasteuria group and on a prosthecomicrobium sp. Arch Microbiol 138:200–205

    Article  Google Scholar 

  • Lachnit T, Meske D, Wahl M, Harder T, Schmitz R (2011) Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ Microbiol 13:655–665

    Article  PubMed  Google Scholar 

  • Lage OM, Bondoso J (2011) Planctomycetes diversity associated with macroalgae. FEMS Microbiol Ecol 78:366–375

    Article  CAS  PubMed  Google Scholar 

  • Lieber A, Leis A, Kushmaro A, Minsky A, Medalia O (2009) Chromatin organization and radio resistance in the bacterium Gemmata obscuriglobus. J Bacteriol 191:1439–1445

    Article  CAS  PubMed  Google Scholar 

  • Liesack W, König H, Schlesner H, Hirsch P (1986) Chemical composition of the peptidoglycan-free cell envelopes of budding bacteria of the pirella/planctomyces group. Arch Microbiol 145:361–366

    Article  CAS  Google Scholar 

  • Longford SR, Tujula NA, Crocetti GR, Holmes AJ, Holmström C, Kjelleberg S, Steinberg PD, Taylor MW (2007) Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat Microb Ecol 48:217–229

    Article  Google Scholar 

  • Lonhienne TGA, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium G. obscuriglobus. Proc Natl Acad Sci USA 107:12883–12888

    Article  CAS  PubMed  Google Scholar 

  • Lyman J, Fleming RH (1940) Composition of artificial seawater. J Mar Res 3:134–146

    CAS  Google Scholar 

  • Morisaki H, Nagai S, Ohshima H, Ikemoto E, Kogure K (1999) The effect of motility and cell-surface polymers on bacterial attachment. Microbiology 145:2797–2802

    CAS  PubMed  Google Scholar 

  • Pearson A, Budin M, Brocks JJ (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium G. obscuriglobus. Proc Natl Acad Sci USA 100:15352–15357

    Article  CAS  PubMed  Google Scholar 

  • Sadowski Z (2001) Effect of biosorption of pb(ii), cu(ii) and cd(ii) on the zeta potential and flocculation of nocardia sp. M. Miner Eng 14:547–552

    Article  CAS  Google Scholar 

  • Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the planctomycetes-verrucomicrobia-chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281

    Article  PubMed  Google Scholar 

  • Schlesner H (1994) The development of media suitable for the microorganisms morphologically resembling planctomyces spp., pirellula spp., and other planctomycetales from various aquatic habitats using dilute media. Syst Appl Microbiol 17:135–145

    Article  Google Scholar 

  • Schott H, Young CY (1973) Electrokinetic studies of bacteria. 3. Effect of polyvalent metal ions on electrophoretic mobility and growth of streptococcus faecalis. J Pharm Sci 62:1797–1801

    Article  CAS  PubMed  Google Scholar 

  • Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2005) Molecular phylogenetic diversity of the bacterial community in the gut of the termite coptotermes formosanus. Biosci Biotechnol Biochem 69:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Soni K, Balasubramanian A, Beskok A, Pillai S (2008) Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media. Curr Microbiol 56:93–97

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Wehmeyer U, Liesack W (1986) 16s ribosomal RNA- and cell wall analysis of G. obscuriglobus, a new member of the order planctomycetales. FEMS Microbiol Lett 37:289–292

    Article  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, Pas-Schoonen KTVD, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449

    Article  CAS  PubMed  Google Scholar 

  • Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H (2003) Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloids Surf B Biointerfaces 29:181–188

    Article  CAS  Google Scholar 

  • van der Wal A, Minor M, Norde W, Zehnder AJB, Lyklema J (1997) Electrokinetic potential of bacterial cells. Langmuir 13:165–171

    Article  Google Scholar 

  • van Loosdrecht MC, Lyklema J, Norde W, Schraa G, Zehnder AJ (1987) Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901

    PubMed  Google Scholar 

  • Vullo DL, Ceretti HM, Daniel MA, Ramirez SA, Zalts A (2008) Cadmium, zinc and copper biosorption mediated by pseudomonas veronii 2e. Bioresour Technol 99:5574–5581

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Horn M (2006) The planctomycetes, verrucomicrobia, chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249

    Article  CAS  PubMed  Google Scholar 

  • Ward NL (2010) Family i. Planctomycetaceae schlesner and stackebrandt 1987, 179vp (effective publication:Schlesner and stackebrandt 1986, 175) emend. Ward (this volume). In: Krieg NR et al (eds) The bacteroidetes, spirochaetes, tenericutes (mollicutes), acidobacteria, fibrobacteres, fusobacteria, dictyoglomi, gemmatimonadetes, lentisphaerae, verrucomicrobia, chlamydiae, and planctomycetes, 2nd edn. Springer, New York, pp 879–925

    Google Scholar 

  • Watson SW, Bock E, Valois FW, Waterbury JB, Schlosser U (1986) Nitrospira marina gen. Nov. Sp. Nov: a chemolithotrohic nitrite-oxidizind bacterium. Arch Microbiol 144:1–7

    Article  Google Scholar 

  • Webster N, Taylor M (2011) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346

    Article  PubMed  Google Scholar 

  • Wilson WW, Wade MM, Holman SC, Champlin FR (2001) Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J Microbiol Methods 43:153–164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The second author was financed by FCT (PhD grant SFRH/BD/35933/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Maria Lage.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lage, O.M., Bondoso, J. & Catita, J.A.M. Determination of zeta potential in Planctomycetes and its application in heavy metals toxicity assessment. Arch Microbiol 194, 847–855 (2012). https://doi.org/10.1007/s00203-012-0818-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0818-x

Keywords

Navigation