Skip to main content
Log in

Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Mutations in the RNA polymerase β-subunit gene rpoB causing resistance to rifampicin (RifR) in Bacillus subtilis were previously shown to lead to alterations in the expression of a number of global phenotypes known to be under transcriptional control. To better understand the influence of rpoB mutations on sporulation and spore resistance to heat and chemicals, cells and spores of the wild-type and twelve distinct congenic RifR mutant strains of B. subtilis were tested. Different levels of glucose catabolite repression during sporulation and spore resistance to heat and chemicals were observed in the RifR mutants, indicating the important role played by the RNA polymerase β-subunit, not only in the catalytic aspect of transcription, but also in the initiation of sporulation and in the spore resistance properties of B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bandow JE, Brötz H, Hecker M (2002) Bacillus subtilis tolerance of moderate concentrations of rifampin involves the sigma(B)-dependent general and multiple stress response. J Bacteriol 184:459–467

    Article  PubMed  CAS  Google Scholar 

  • Boor KJ, Duncan ML, Price CW (1995) Genetic and transcriptional organization of the region encoding the beta subunit of Bacillus subtilis RNA polymerase. J Biol Chem 270:20329–20336

    Article  PubMed  CAS  Google Scholar 

  • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901–912

    Article  PubMed  CAS  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  PubMed  CAS  Google Scholar 

  • Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20

    PubMed  CAS  Google Scholar 

  • Driks A (2002) Proteins of the spore core and coat. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, pp 527–535

    Google Scholar 

  • Gaynor EC, Wells DH, MacKichan JK, Falkow S (2005) The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol Microbiol 56:8–27

    Article  PubMed  CAS  Google Scholar 

  • Gest H, Mandelstam J (1987) Longevity of microorganisms in natural environments. Microbiol Sci 4:69–71

    PubMed  CAS  Google Scholar 

  • Hackett RH, Setlow P (1988) Properties of spores of Bacillus subtilis strains which lack the major small, acid-soluble protein. J Bacteriol 170:1403–1404

    PubMed  CAS  Google Scholar 

  • Helmann JD, Moran CP Jr (2002) RNA polymerase and sigma factors. In: Soneneshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, pp 289–312

    Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156

    Article  PubMed  CAS  Google Scholar 

  • Inaoka T, Ochi K (2007) Glucose uptake pathway-specific regulation of synthesis of neotrehalosadiamine, a novel autoinducer produced in Bacillus subtilis. J Bacteriol 189:65–75

    Article  PubMed  CAS  Google Scholar 

  • Ingham CJ, Furneaux PA (2000) Mutations in the β subunit of the Bacillus subtilis RNA polymerase that confer both rifampicin resistance and hypersensitivity to NusG. Microbiology 12:3041–3049

    Google Scholar 

  • Kang YS, Park W (2010) Trade-off between antibiotic resistance and biological fitness in Acinetobacter sp. strain DR1. Environ Microbiol 12:1304–1318

    Article  PubMed  CAS  Google Scholar 

  • Kawamura F, Wang FL, Doi RH (1985) Catabolite-resistant sporulation (crsA) mutations in the Bacillus subtilis RNA polymerase σ43 gene (rpoD) can suppress and be suppressed by mutations in the spoO genes. Proc Natl Acad Sci USA 82:8124–8128

    Article  PubMed  CAS  Google Scholar 

  • Keijser BJ, Ter Beek A, Rauwerda H, Schuren F, Montijn R, van der Spek H, Brul S (2007) Analysis of temporal gene expression during Bacillus subtilis spore germination and outgrowth. J Bacteriol 189:3624–3634

    Article  PubMed  CAS  Google Scholar 

  • Lee KS, Bumbaca D, Kosman J, Setlow P, Jedrzejas MJ (2008) Structure of a protein-DNA complex essential for DNA protection in spores of Bacillus species. Proc Natl Acad Sci USA 105:2806–2811

    Article  PubMed  CAS  Google Scholar 

  • Loshon CA, Genest PC, Setlow B, Setlow P (1999) Formaldehyde kills spores of Bacillus subtilis by DNA damage and small, acid-soluble spore proteins of the alpha/beta-type protect spores against this DNA damage. J Appl Microbiol 87:8–14

    Article  PubMed  CAS  Google Scholar 

  • Maughan H, Galeano B, Nicholson WL (2004) Novel rpoB mutations conferring rifampin resistance on Bacillus subtilis: global effects on growth, competence, sporulation, and germination. J Bacteriol 186:2481–2486

    Article  PubMed  CAS  Google Scholar 

  • Maughan H, Callicotte V, Hancock A, Birky CW Jr, Nicholson WL, Masel J (2006) The Population genetics of phenotypic deterioration in experimental populations of Bacillus subtilis. Evolution 60:686–695

    PubMed  Google Scholar 

  • Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A, Setlow P (2002) Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J Appl Microbiol 92:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Stackebrandt E, Reitz G, Berger T, Rettberg P, Doherty AJ, Horneck G, Nicholson WL (2007) Role of DNA repair by non-homologous end joining (NHEJ) in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV and ionizing radiation. J Bacteriol 189:3306–3311

    Article  PubMed  CAS  Google Scholar 

  • Moeller R, Setlow P, Pedraza-Reyes M, Okayasu R, Reitz G, Nicholson WL (2011) Role of the Nfo and ExoA apurinic/apyrimidinic (AP) endonucleases in the radiation resistance and radiation-induced mutagenesis of Bacillus subtilis spores. J Bacteriol 193:2875–2879

    Article  PubMed  CAS  Google Scholar 

  • Nanamiya H, Fugono N, Asai K, Doi RH, Kawamura F (2000) Suppression of temperature-sensitive sporulation mutation in the Bacillus subtilis sigA gene by rpoB mutation. FEMS Microbiol Lett 192:237–241

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Maughan H (2002) The spectrum of spontaneous rifampin resistance mutations in the rpoB gene of Bacillus subtilis 168 spores differs from that of vegetative cells and resembles that of Mycobacterium tuberculosis. J Bacteriol 184:4936–4940

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination, and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Sussex, pp 391–450

    Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh JH, Setlow P (2000) Resistance of bacterial endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  PubMed  CAS  Google Scholar 

  • Nicholson WL, Fajardo-Cavazos P, Rebeil R, Slieman TA, Riesenman PJ, Law JF, Xue Y (2002) Bacterial endospores and their significance in stress resistance. Antonie Van Leeuwenhoek 81:27–32

    Article  PubMed  CAS  Google Scholar 

  • Paidhungat M, Setlow P (2002) Spore germination and outgrowth. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, pp 537–548

    Google Scholar 

  • Paidhungat M, Setlow B, Driks A, Setlow P (2000) Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J Bacteriol 182:5505–5512

    Article  PubMed  CAS  Google Scholar 

  • Paredes-Sabja D, Sarker N, Setlow B, Setlow P, Sarker MR (2008) Roles of DacB and Spm proteins in Clostridium perfringens spore resistance to moist heat, chemicals, and UV radiation. Appl Environ Microbiol 74:3730–3738

    Article  PubMed  CAS  Google Scholar 

  • Perego M, Hoch JA (2002) Two-component systems, phosphorelays, and regulation of their activities by phosphatases. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, pp 473–481

    Google Scholar 

  • Perkins AE, Nicholson WL (2008) Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of Rifampin-resistant rpoB mutants. J Bacteriol 190:807–814

    Article  PubMed  CAS  Google Scholar 

  • Perkins AE, Schuerger AC, Nicholson WL (2008) Isolation of rpoB mutations causing rifampicin resistance in Bacillus subtilis spores exposed to simulated Martian surface conditions. Astrobiology 8:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Piggot PJ, Losick R (2002) Sporulation genes and intercompartmental regulation. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, pp 483–517

    Google Scholar 

  • Popham DL, Sengupta S, Setlow P (1995) Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spores with increased core water content and with or without major DNA-binding proteins. Appl Environ Microbiol 61:3633–3638

    PubMed  CAS  Google Scholar 

  • Riesenman PJ, Nicholson WL (2000) Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl Environ Microbiol 66:620–626

    Article  PubMed  CAS  Google Scholar 

  • Rothstein DM, Keeler CL, Sonenshein AL (1976) Bacillus subtilis RNA polymerase mutants temperature-sensitive for sporulation. In: Losick RL, Chamberlin M (eds) RNA polymerase. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 601–616

    Google Scholar 

  • Saint-Ruf C, Matic I (2006) Environmental tuning of mutation rates. Environ Microbiol 8:193–199

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer P (1969) Sporulation and the production of antibiotics, exoenzymes, and exotoxins. Bacteriol Rev 33:48–71

    PubMed  CAS  Google Scholar 

  • Schaeffer P, Millet J, Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 45:704–711

    Article  Google Scholar 

  • Setlow P (2003) Spore germination. Curr Opin Microbiol 6:550–556

    Article  PubMed  CAS  Google Scholar 

  • Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525

    Article  PubMed  CAS  Google Scholar 

  • Setlow B, Setlow P (1996) Role of DNA repair in Bacillus subtilis spore resistance. J Bacteriol 178:3486–3495

    PubMed  CAS  Google Scholar 

  • Setlow B, McGinnis KA, Ragkousi K, Setlow P (2000) Effects of major spore-specific DNA binding proteins on Bacillus subtilis sporulation and spore properties. J Bacteriol 182:6906–6912

    Article  PubMed  CAS  Google Scholar 

  • Severinov K, Soushko M, Goldfarb A, Nikiforov V (1993) Rifampicin region revisited: new rifampicin-resistant and streptolydigin-resistant mutants in the β subunit of Escherichia coli RNA polymerase. J Biol Chem 268:13820–14825

    Google Scholar 

  • Shafikhani SH, Núñez E, Leighton T (2003a) ScoC mediates catabolite repression of sporulation in Bacillus subtilis. Curr Microbiol 47:327–336

    Article  PubMed  CAS  Google Scholar 

  • Shafikhani SH, Portori AA, Leighton T (2003b) Catabolite-induced repression of sporulation in Bacillus subtilis. Curr Microbiol 47:300–308

    Article  PubMed  CAS  Google Scholar 

  • Tennen R, Setlow B, Davis KL, Loshon C, Setlow P (2000) Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J Appl Microbiol 89:330–338

    Article  PubMed  CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  PubMed  CAS  Google Scholar 

  • Wang ST, Setlow B, Conlon EM, Lyon JL, Imamura D, Sato T, Setlow P, Losick R, Eichenberger P (2006) The forespore line of gene expression in Bacillus subtilis. J Mol Biol 358:16–37

    Article  PubMed  CAS  Google Scholar 

  • Wehrli W (1977) Kinetic studies of the interaction between rifampicin and DNA-dependent RNA polymerase of Escherichia coli. Eur J Biochem 80:325–330

    Article  PubMed  CAS  Google Scholar 

  • Wehrli W, Staehelin M (1971) Actions of the rifamycins. Bacteriol Rev 35:290–309

    PubMed  CAS  Google Scholar 

  • Wehrli W, Knusel F, Schmid K, Staehelin M (1968) Interaction of rifamycin with bacterial RNA polymerase. Proc Natl Acad Sci USA 61:667–673

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Andrea Schröder and Amy Perkins for their skillful technical assistance during parts of this work. We express thanks to Krunoslav Brčić-Kostić for his valuable support and the three anonymous reviewers for their constructive comments and insightful suggestions. This study was supported in part by grant CBP.EAP.CLG.983747 from the NATO Science for Peace Program to R.M., and by grants from NASA (NNA06CB58G and NNX08AO15G) to W.L.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Moeller.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeller, R., Vlašić, I., Reitz, G. et al. Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Arch Microbiol 194, 759–767 (2012). https://doi.org/10.1007/s00203-012-0811-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0811-4

Keywords

Navigation