Skip to main content
Log in

qPCR quantification of Sphaerodes mycoparasitica biotrophic mycoparasite interaction with Fusarium graminearum: in vitro and in planta assays

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Sphaerodes mycoparasitica, a biotrophic mycoparasite of Fusarium species, improved wheat seed germination and seedling growth in vitro compared to Trichoderma harzianum, a necrotrophic mycoparasite. However, under phytotron conditions, both S. mycoparasitica and T. harzianum had positive impact on wheat seedlings growth in the presence of F. graminearum. Once exposed to the mycoparasites, the DNA quantity of F. graminearum in wheat root decreased. Observed shifts in DNA quantity using qPCR, a set of newly designed Sphaerodes-specific SmyITS primers, as well as Trichoderma-TGP4 and Fusarium-Fg16 N primers, demonstrated the mycoparasite’s biocontrol effectiveness in planta. In the presence of F. graminearum, the concentration of S. mycoparasitica DNA remained stable in the root, whereas the amount of T. harzianum DNA decreased. The toxicity assays indicated that S. mycoparasitica’s mycelia withstand higher concentrations of deoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone mycotoxins than T. harzianum mycelia. This study compares the ability of two fungi to improve the wheat growth, decrease the root colonization of Fusarium, and withstand mycotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bardin SD, Huang H-C (2003) Efficacy of stickers for seed treatment with organic matter or microbial agents for the control of damping-off of sugar beet. Plant Pathol Bull 12:19–26

    CAS  Google Scholar 

  • Beiley BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ, Vinyard BT, Holmes KA (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46:24–35

    Article  Google Scholar 

  • Beily BA, Lumsden RD (1998) Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens’. In: Kubicek CP, Harman GE, Ondik KL (eds) Trichoderma and Gliocladium: enzymes, biological control, and commercial applications, vol 2. CRC Press, New York, pp 185–204

    Google Scholar 

  • Ben Mansour M, Goh YK, Vujanovic V (2011) Rapid macroconidia production in Fusarium graminearum 3- and 15-acetyldeoxynivalenol (ADON) chemotypes using sucrose-water medium. Ann Microbiol doi:10.1007/s13213-011-0335-1

  • Bilgrami KS, Choudhary AK (1998) Mycotoxins in preharvest contamination of agricultural crops. Mycotoxins in agriculture and food safety. Marcel Dekker Inc, New York

    Google Scholar 

  • Bily AC, Reid LM, Savard ME et al (2004) Analysis of Fusarium graminearum mycotoxins in different biological matrices by LC/MS. Mycopathologia 157:117–126

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul Toxicol Pharm 39:214–228

    Article  CAS  Google Scholar 

  • Burmeister HR, Hesseltine CW (1970) Biological assays for two mycotoxins produced by Fusarium tricinctum. Appl Microbiol 20:437–440

    PubMed  CAS  Google Scholar 

  • Cardoza RE, Malmierca MG, Hermosa MR et al (2011) Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 14:4867–4877

    Article  Google Scholar 

  • Chau HW, Si BC, Goh YK, Vujanovic V (2009) A novel method for identifying hydrophobicity on fungal surfaces. Mycol Res 113:1046–1052

    Article  PubMed  Google Scholar 

  • Cortes-Penagos C, Olmedo-Monfil V, Herrera-Estrella A (2007) The nature of fungal mycoparasitic biocontrol agents. In: Chincholkar SB, Mukerji KG (eds) Biological control of plant diseases. The Haworth Press, Inc., New York, pp 327–353

    Google Scholar 

  • Cutler HG, Cox RH, Crumley FG, Cole PD (1986) 6-pentyl-α-pyrone from Trichoderma harzianum: its plant growth inhibitory and antimicrobial properties. Agr Biol Chem 50:2943–2945

    Article  CAS  Google Scholar 

  • Cutler HG, Himmersbach DS, Arrendale RF, Cole PD, Cox RH, Koninginin A (1989) A novel plant growth regulator from Trichoderma koningii. Agr Biol Chem 53:2605–2611

    Article  CAS  Google Scholar 

  • Desjardins AE, Proctor RH (2007) Molecular biology of Fusarium mycotoxins. Int J Food Microbiol 119:47–50

    Article  PubMed  CAS  Google Scholar 

  • Doohan FM, Brennan J, Cooke BM (2003) Influence of climatic factors on Fusarium species pathogenic to cereals. Eur J Plant Pathol 109:755–768

    Article  Google Scholar 

  • Fernandez MR, Chen Y (2005) Pathogenicity of Fusarium species on different plant parts of spring wheat under controlled conditions. Plant Dis 89:164–169

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Jabaji-Hare SH (2003) Quantification of Fusarium solani f. sp. phaseoli in mycorrhizal bean plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology 93:229–235

    Article  PubMed  CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Gachon C, Mingam A, Charrier B (2004) Real-time PCR: what relevance to plant studies? J Exp Bot 55:1445–1454

    Article  PubMed  CAS  Google Scholar 

  • Gale LR, Harrison SA, Ward TJ, O’Donnell K, Milus EA, Gale SW, Kistler HC (2011) Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in southern Louisiana. Phytopathology 101:124–134

    Article  PubMed  CAS  Google Scholar 

  • Goh YK, Vujanovic V (2010a) Sphaerodes quadrangularis biotrophic mycoparasitism on Fusarium avenaceum. Mycologia 102:757–762

    Article  PubMed  Google Scholar 

  • Goh YK, Vujanovic V (2010b) Biotrophic mycoparasitic interactions between Sphaerodes mycoparasitica and phytopathogenic Fusarium species. Biocontrol Sci Tech 20:891–902

    Article  Google Scholar 

  • Goh YK, Vujanovic V (2010c) Ascospore germination patterns revealed ascomycetous biotrophic mycoparasite specificity to Fusarium hosts. Botany 88:1033–1043

    Article  CAS  Google Scholar 

  • Goh YK, Daida P, Vujanovic V (2009) Effects of abiotic and biotic stress factors on chlamydospore formation in Fusarium graminearum and Fusarium sporotrichioides. Biocontrol Sci Tech 19:151–167

    Article  Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid Symp Ser. 41:95–98. Nucl Acid Symp Ser. 41:95–98

    CAS  Google Scholar 

  • Harveson RM, Kimbrough JW (2000) First report of Persiciospora moreaui, a parasite of Fusarium oxysporum, in the western hemisphere. Mycotaxon 76:361–365

    Google Scholar 

  • Harveson RM, Kimbrough JW (2001a) The identification of Melanospora and its allies from field isolations of Fusarium oxysporum. Int J Plant Sci 162:403–410

    Article  Google Scholar 

  • Harveson RM, Kimbrough JW (2001b) Parasitism and measurement of damage to Fusarium oxysporum by species of Melanospora, Sphaerodes, and Persiciospora. Mycologia 93:249–257

    Article  Google Scholar 

  • Harveson RM, Kimbrough JW, Hopkins DL (2002) Novel use of a pyrenomycetous mycoparasite for management of Fusarium wilt of watermelon. Plant Dis 86:1025–1030

    Article  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Isayenkov S, Fester T, Hause B (2004) Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. J Plant Pathol 161:1379–1383

    CAS  Google Scholar 

  • Ishii S, Loynachan TE (2004) Rapid and reliable DNA extraction techniques from trypan-blue-stained mycorrhizal roots: comparison of two methods. Mycorrhiza 14:271–275

    Article  PubMed  CAS  Google Scholar 

  • Jeffries P (1995) Biology and ecology of mycoparasitism. Can J Bot 73(Suppl 1):S1284–S1290

    Article  Google Scholar 

  • Jeffries P, Young TWK (1994) Interfungal parasitic relationships. CAB International, Wallingford

    Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Divers 38:25–50

    Google Scholar 

  • Kamilova F, Lamers G, Lugtenberg B (2008) Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ Microbiol 10:2455–2461

    Article  PubMed  Google Scholar 

  • Kim TG, Knudsen GR (2008) Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Appl Soil Ecol 40:100–108

    Article  Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci 59:475–483

    Article  PubMed  CAS  Google Scholar 

  • Lawrie RG, Matus-Cádiz MA, Hucl P (2006) Estimating out-crossing rates in spring wheat cultivars using the contact method. Crop Sci 46:247–249

    Article  Google Scholar 

  • Lehmann E (1975) Nonparametrics-statistical methods based on ranks. Holden-Day, Oakland, CA

    Google Scholar 

  • Mao W, Lewis JA, Hebbar PK, Lumsden RD (1997) Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Dis 81:450–454

    Article  Google Scholar 

  • McCormick SP (2009) Phytotoxicity of trichothecenes. Am Chem Soc-ACS Symp Ser 1031(Chapter 10):143–155 doi:10.1021/bk-2009-1031.ch010

  • McNeil JN, Cotnoir P-A, Leroux T, Laprade R, Schwartz J-L (2010) A Canadian national survey on the public perception of biological control. Biocontrol 55:445–454

    Article  Google Scholar 

  • Menzies JG (1993) A strain of Trichoderma viride pathogenic to germinating seedlings of cucumber, pepper and tomato. Plant Pathol 42:784–791

    Article  Google Scholar 

  • Nicholson P, Simpson DR, Weston G et al (1998) Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol 53:17–37

    Article  CAS  Google Scholar 

  • Pal KK, McSpadden Gardener B (2006) Biological control of plant pathogens. Plant Health Instr doi:10.1094/PHI-A-2006-1117-02

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Ann Rev Phytopathol 39:103–133

    Article  CAS  Google Scholar 

  • Puri KD, Zhong S (2010) The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology 100:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Reisher GH, Lemmens M, Farnleitner A, Adler A, Mach RL (2004) Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe. J Microbiol Methods 59:141–146

    Article  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Add Contam 22:369–378

    Article  CAS  Google Scholar 

  • Samson RA, Hoekstra ES, Frisvad JC (2004) Introduction to food borne fungi, 7th edn. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands

    Google Scholar 

  • Simpson DR, Thomsett MA, Nicholson P (2004) Competitive interactions between Microdochium nivale var. majus, M. nivale var. nivale and Fusarium culmorum in planta and in vitro. Environ Microbiol 6:79–87

    Article  PubMed  Google Scholar 

  • Sivan A, Chet I (1989) The possible role of competition between Trichoderma harzianum and Fusarium oxysporum on rhizosphere colonization. Phytopathology 79:198–203

    Article  Google Scholar 

  • Sokolski S, Piché Y, Bérubé JA (2004) Lophodermium macci sp. nov., a new species on senesced foliage of five-needles pines. Mycologia 96:1261–1267

    Article  PubMed  CAS  Google Scholar 

  • Steyn PS (1995) Mycotoxins, general view, chemistry and structure. Toxicol Lett 82–83:843–851

    Article  PubMed  Google Scholar 

  • Utermark J, Karlovsky P (2007) Role of zearalenone lactonase in protection of Gliocladium roseum from fungitoxic effects of the mycotoxin zearalenone. Appl Environ Microbiol 73:637–642

    Article  PubMed  CAS  Google Scholar 

  • Varga J, Péteri Z, Tábori K, Téren J, Vágvölgyi C (2005) Degradation of ochratoxin A and other mycotoxins by Rhizopus isolates. Int J Food Microbiol 99:321–328

    Article  PubMed  CAS  Google Scholar 

  • Viterbo A, Inbar J, Hadar Y, Chet I (2007) Plant disease biocontrol and induced resistance via fungal mycoparasites. In: Kubicek CP, Druzhinina LS (eds) Environmental and microbial relationships, 2nd edn, The Mycota IV. Springer, Berlin, pp 127–146

  • Von der Ohe C, Gauthier V, Tamburic-Ilincic L et al (2010) A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur J Plant Pathol 127:407–417

    Article  CAS  Google Scholar 

  • Vujanovic V, Goh YK (2009) Sphaerodes mycoparasitica sp. nov., a new biotrophic mycoparasite on Fusarium avenaceum, F. graminearum and F. oxysporum. Mycol Res 113:1172–1180

    Article  PubMed  Google Scholar 

  • Vujanovic V, Goh YK (2010) Sphaerodes mycoparasites and new Fusarium hosts for S. mycoparasitica. Mycotaxon 114:179–191

    Article  Google Scholar 

  • Vujanovic V, Goh YK (2011) Sphaerodes mycoparasitica biotrophic mycoparasite of 3‐acetyldeoxynivalenol‐ and 15‐acetyldeoxynivalenol‐producing toxigenic Fusarium graminearum chemotypes FEMS Microbiol Lett 316:136–143. FEMS Microbiol Lett 316:136–143

    Article  PubMed  CAS  Google Scholar 

  • Vujanovic V, Vidovic S, Fernandez MR, Daida P, Korber D (2009) Whole-cell protein and ITS rDNA profiles as diagnostic tools to discriminate Fusarium avenaceum intraspecific variability and associated virulence. Can J Microbiol 55:117–125

    Article  PubMed  CAS  Google Scholar 

  • Ward TJ, Clear RM, Rooney AP et al (2008) An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fsuarium graminearum in North America. Fungal Genet Biol 45:473–484

    Article  PubMed  Google Scholar 

  • Wilkins K, Nielsen KF, Din SU (2003) Patterns of volatile metabolites and nonvolatile trichothecenes produced by isolates of Stachybotrys, Fusarium, Trichoderma, Trichothecium, and Memnoniella. Environ Sci Poll Res 10:162–166

    Article  CAS  Google Scholar 

  • Yergeau E, Filion M, Vujanovic V, St-Arnaud M (2005) A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus. J Microbiol Methods 60:143–154

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhang N, Blackwell M (2002) Molecular phylogeny of Melanospora and similar pyrenomycetous fungi. Mycol Res 106:148–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Natural Sciences and Engineering Research Council (NSERC)—Discovery and Saskatchewan Agriculture and Food (SAF)—Agriculture Development Fund (ADF) granted to Dr. V. Vujanovic. The authors would like to thank Dr. P. Daida for technical assistance and Dr. Pierre Hucl (Crop Development Centre) for providing wheat seeds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Vujanovic.

Additional information

Communicated by Axel Brakhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vujanovic, V., Goh, Y.K. qPCR quantification of Sphaerodes mycoparasitica biotrophic mycoparasite interaction with Fusarium graminearum: in vitro and in planta assays. Arch Microbiol 194, 707–717 (2012). https://doi.org/10.1007/s00203-012-0807-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0807-0

Keywords

Navigation