Skip to main content
Log in

Hydrolysis of fungal and plant cell walls by enzymatic complexes from cultures of Fusarium isolates with different aggressiveness to rye (Secale cereale)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The efficiency of hydrolysis of fungal (Fusarium spp.) cell wall and rye root cell wall by crude enzymatic complexes from (42-day-old) cultures of three F. culmorum isolates, a plant growth–promoting rhizosphere isolate (PGPF) DEMFc2, a deleterious rhizosphere isolate (DRMO) DEMFc5, and a pathogenic isolate DEMFc37, as well as two other, pathogenic isolates belonging to F. oxysporum and F. graminearum species was studied. In the enzymatic complexes originating from the Fusarium spp. cultures, the activities of the following cell wall–degrading enzymes were identified: glucanases, chitinases, xylanases, endocellulases, exocellulases, pectinases, and polygalacturonases. The preparation originating from a culture of the PGPF isolate was the least efficient in plant cell wall (PCW) hydrolysis. There were no significant differences in the efficiency of PCW hydrolysis between preparations from cultures of the DRMO and the pathogenic isolates. PGPF was the most efficient in liberating reducing sugars and N-acetylglucosamine (GlcNAc) from fungal cell walls (FCW). Xylanase activities of the enzymatic complexes were strongly positively (R > +0.9) correlated with their efficiency in hydrolyzing PCW, whereas chitinase activities were correlated with the efficiency in FCW hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  PubMed  CAS  Google Scholar 

  • Akimitsu K, Isshiki A, Ohtani K, Yamamoto H, Eshel D, Prusky D (2004) Sugars and pH: a clue to the regulation of fungal cell wall-degrading enzymes in plants. Physiol Mol Plant Pathol 65:271–275

    Article  CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, New York, USA, pp 360–361

    Google Scholar 

  • Alfonso C, del Amo F, Nuero OM, Reyes F (1992) Physiological and biochemical studies on Fusarium oxysporum f. sp. lycopersici race 2 for its biocontrol by nonpathogenic fungi. FEMS Microbiol Lett 99:169–174

    Article  CAS  Google Scholar 

  • Alfonso C, Nuero OM, Santamaria F, Reyes F (1995a) Purification of a heat-stable chitin deacetylase from Aspergillus nidulans and its role in cell wall degradation. Curr Microb 30:49–55

    Article  CAS  Google Scholar 

  • Alfonso C, Santamaria F, Nuero OM, Prleto A, Leal JA, Reyes F (1995b) Biochemical studies on the cell wall degradation of Fusarium oxysporum f. sp. Iycopersici race 2 by its own lytic enzymes for its biocontrol. Lett Appl Microbiol 20:105–109

    Article  CAS  Google Scholar 

  • Annis SL, Goodwin PH (1997) Recent advances in the molecular genetics of plant cell wall-degrading enzymes produced by plant pathogenic fungi. Eur J Plant Pathol 103:1–14

    Article  CAS  Google Scholar 

  • Apel PC, Panaccione DG, Holden FR, Walton JD (1993) Cloning and targeted gene disruption of XYL1, a beta 1,4-xylanase gene from the maize pathogen Cochliobolus carbonum. Mol Plant Microbe Interact 6:467–473

    Article  PubMed  CAS  Google Scholar 

  • Armitage P, Berry G (1987) Statistical methods in medical research. Blackwell Science Publications, Oxford

    Google Scholar 

  • Beliën T, Van Campenhout S, Robben J, Volckaert G (2006) Microbial endoxylanases: effective weapons to breach the plant cell wall barrier or, rather, triggers of plant defense systems? Mol Plant Microbe Interact 19:1072–1081

    Article  PubMed  Google Scholar 

  • Boothby D, Magreola NO (1984) Production of polysaccharide degrading enzymes by Cochliobolus sativus and Fusarium culmorum grown in liquid culture. Trans Br Mycol Soc 83:275–280

    Article  CAS  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808

    Article  PubMed  Google Scholar 

  • Braun EJ, Rodrigues CA (1993) Purification and properties of an endoxylanase from a corn stalk rot strain of Erwinia chrysanthemi. Phytopathology 83:332–338

    Article  CAS  Google Scholar 

  • Brito N, Espino JJ, Gonzalez C (2006) The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19:25–32

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 4:445–476

    Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plant: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kochian L (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  PubMed  CAS  Google Scholar 

  • Cooper RM, Longman D, Campbell A, Henry M, Lees PE (1988) Enzymic adaptation of cereal pathogens to the monocotyledonous primary wall. Physiol Mol Plant Pathol 32:33–47

    Article  Google Scholar 

  • Degefu Y, Fagerström R, Kalkkinen N (1995) Purification and partial characterization of xylanase from fungal pathogen Helminthosporium furcicum (Pass). Eur J Plant Pathol 101:291–299

    Article  CAS  Google Scholar 

  • Degefu Y, Paulin L, Lübeck PS (2001) Cloning, sequencing and expression of a xylanase gene from the maize pathogen Helminthosporium turcicum. Eur J Plant Pathol 107:457–465

    Article  CAS  Google Scholar 

  • Douaiher M-N, Nowak E, Dumortier V, Durand R, Reignault PH, Halama P (2007) Mycosphaerella graminicola produces a range of cell wall-degrading enzyme activities in vitro that vary with the carbon source. Eur J Plant Pathol 117:71–79

    Article  CAS  Google Scholar 

  • Ebel J, Casio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148:1–36

    Article  CAS  Google Scholar 

  • Enkerli J, Felix G, Boller T (1999) The enzyme activity of fungal xylanase is not necessary for its elicitor activity. Plant Physiol 121:391–397

    Article  PubMed  CAS  Google Scholar 

  • Furman-Matarasso N, Cohen E, Du Q, Chejanovsky N, Hanania U, Avni A (1999) A point mutation in the ethylene-inducing xylanase elicitor inhibits the β-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol 121:345–351

    Article  PubMed  CAS  Google Scholar 

  • Giesbert S, Lepping H-B, Tenberge KB, Tudzynski P (1998) The xylanolytic system of Claviceps purpurea: cytological evidence for secretion of xylanases in infected rye tissue and molecular characterization of two xylanase genes. Phytopathology 88(10):1020–1030

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Miranda B, Guettero C, Leal JA (1984) Effect of culture age an cell wall polysaccharides of Penicillium allahabadence. Exp Mycol 8:298–303

    Article  CAS  Google Scholar 

  • Gomez-Miranda B, Prieto A, Leal JA (1990) Chemical composition and characterization of a galactomannoglucan from Gliocladium viride. FEMS Microbiol Lett 70:331–336

    Article  CAS  Google Scholar 

  • Hatsch D, Phalip V, Petkovski E, Jeltsch J-M (2006) Fusarium graminearum on plant cell wall: no fewer than 30 xylanase genes transcribed. Biochem Biophys Res Commun 345:959–966

    Article  PubMed  CAS  Google Scholar 

  • Hope CFA, Burns RG (1987) Activity, origins and location of cellulase in silt loam soil. Biol Fert Soils 5:164–170

    Article  CAS  Google Scholar 

  • Isaak S, Gokhale AV (1982) Autolysis: a tool for protoplast production from Aspergillus nidulans. Trans Br Mycol Soc 78:389–394

    Article  Google Scholar 

  • Jaroszuk-Ściseł J, Kurek E, Winiarczyk K, Baturo A, Łukanowski A (2008) Colonization of root tissues and protection against fusarium wilt of rye (Secale cereale) by nonpathogenic rhizosphere strains of Fusarium culmorum. Biol Control 45:297–307

    Article  Google Scholar 

  • Jaroszuk-Ściseł J, Kurek E, Rodzik B, Winiarczyk K (2009) Interactions between rye (Secale cereale) root border cells (RBCs) and pathogenic and nonpathogenic rhizosphere strains of Fusarium culmorum. Mycol Res 113:1053–1061

    Article  PubMed  Google Scholar 

  • Jaroszuk-Ściseł J, Kurek E, Słomka A, Janczarek M, Rodzik B (2011) Activities of cell wall degrading enzymes in autolyzing cultures of three Fusarium culmorum isolates: growth promoting, deleterious and pathogenic to rye (Secale cereale). Mycologia 103(5):929–945

    Article  PubMed  Google Scholar 

  • Kang Z, Buchenauer H (2000) Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. J Phytopathol 148:263–275

    Article  CAS  Google Scholar 

  • Keon JPR, Byrde RJW, Cooper RM (1987) Some aspects of fungal enzymes that degrade plant cell walls. In: Pegg GF, Ayres PG (eds) Fungal infection of plants. University Press, Cambridge, pp 133–157

    Google Scholar 

  • Kurek E, Jaroszuk J (1997) Changes in the number of Fusarium propagules introduced to soil. Polish J Soil Sci 30:63–69

    Google Scholar 

  • Labavitch TM, Ray PM (1978) Structure of hemicellulosic polysaccharides of Avena sativa coleoptile cell walls. Phytochemistry 17:933–937

    Article  CAS  Google Scholar 

  • Lahoz R, Reyes F, Beltra R, Garcia-Tapia C (1976) Lytic enzymes in the autolysis of filamentous fungi. Mycopathologia 60:45–49

    Article  PubMed  CAS  Google Scholar 

  • Lalaoui F, Halama P, Dumortier V, Paul B (2000) Cell wall-degrading enzymes produced in vitro by isolates of Phaeosphaeria nodorum differing in aggressiveness. Plant Pathol 49:727–733

    Article  CAS  Google Scholar 

  • Leal JA, Gomez-Miranda B, Prieto A, Bernabe M (1992) Chemical and structural similarities in wall polysaccharides of some Penicillium, Eupenicillium and Aspergillus. FEMS Microbiol Lett 90:165–168

    Article  CAS  Google Scholar 

  • Lehtinen U (1993) Plant cell wall degrading enzymes of Septoria nodorum. Physiol Mol Plant Pathol 43:121–134

    Article  CAS  Google Scholar 

  • Lynch PT, Collin HA, Isaac S (1985) Use of autolytic enzyme for isolation of protoplasts from Fusarium tricinctum hyphae. Trans Br Mycol Soc 84:473–478

    Article  CAS  Google Scholar 

  • Martin JP (1950) Use of acid rose Bengal and streptomycin in the plate methods for estimating soil fungi. Soil Sci 38:215–220

    Article  Google Scholar 

  • Montesano M, Brader G, Palva ET (2003) Pathogen derived elicitors: searching for receptors in plants. Mol Plant Pathol 4:73–79

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Perez-Leblic MI, Reyes F, Martinez MJ, Lahoz R (1982) Cell wall degradation in the autolysis of filamentous fungi. Mycopathologia 80:147–155

    Article  PubMed  CAS  Google Scholar 

  • Phalip V, Goubet F, Carapito R, Jeltsch J-M (2009) Plant cell wall degradation with a powerful Fusarium graminearum enzymatic arsenal. J Microbiol Biotechnol 19:573–581

    PubMed  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  PubMed  CAS  Google Scholar 

  • Reyes F, Byrde RJW (1973) Partial purification and properties of a p-N-acetylglucosaminidase from the fungus Sclerotinia fructigena. Biochem J 131:381–388

    PubMed  CAS  Google Scholar 

  • Reyes F, Lahoz R, Cornago P (1977) Autolysis of Neurospora crassa in different culture conditions and release of β-N-acetylglucosaminidase and chitinase. Trans Br Mycol Soc 68:357–361

    Article  Google Scholar 

  • Rodriguez-Kabana R, Godoy G, Morgan-Jones G, Shelby RA (1983) The determination of soil chitinase activity; conditions for assay and ecological studies. Plant Soil 75:95–106

    Article  CAS  Google Scholar 

  • Rössner H (1991) Bestimmung der Chitinase-Aktivitat. In: Schinner F, Öhlinger R, Kandeler E (eds) Bodenbiologische Arbeitsmethoden. Springer, Berlin, pp 66–70

    Google Scholar 

  • Ruiz-Herrera J (1991) Biosynthesis of β-glucans in fungi. Antonie Van Leeuwenhoek 60(2):73–81

    Article  CAS  Google Scholar 

  • Santamaria F, Nuero OM, Alfonso C, Prieto A, Leal JA, Reyes F (1995) Cell wall degradation of Fusarium oxysporum f. sp. lycopersici race 2 by lytic enzymes from different Fusarium species for its biocontrol. Lett Apll Microbiol 20:385–390

    Article  CAS  Google Scholar 

  • Schwarz PB, Jones BL, Steffenson BJ (2002) Enzymes associated with Fusarium infection of barley. J Am Soc Brew Chem 60(3):130–134

    CAS  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Skujins JJ, Potgieter HJ, Alexander M (1965) Dissolution of fungal cell walls by a streptomycete chitinase and β-(1–3) glucanase. Arch Biochem Biophys 111:358–364

    Article  PubMed  CAS  Google Scholar 

  • Somogyi M (1945) A new reagent for determination of sugars. J Biol Chem 160:61–68

    CAS  Google Scholar 

  • Wanjiru WM, Zhensheng K, Buchenauer H (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108:803–810

    Article  CAS  Google Scholar 

  • Wolska-Mitaszko B, Jaroszuk-Ściseł J, Pszeniczna K (2007) Isoforms of trehalase and invertase of Fusarium oxysporum. Mycol Res 111:456–465

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Kauffmann S, Darvill AG, Albersheim P (1995) Purification, cloning and characterization of two xylanases from Magnaporthe grisea, the rice blast fungus. Mol Plant-Microbe Interact 8:506–514

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Halley JE, Luttig C, Fernekes LM, Gutierrez-Sanchez G, Darvill AG, Albersheim P (2006) Identification of an endobeta-1,4-D-xylanase from Magnaporthe grisea by knockout analysis, purification, and heterologous expression. Appl Environ Microbiol 72:986–993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The scientific research was financed from science funding resources as a personal research project no. N N310 441338 in the years 2010–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Jaroszuk-Ściseł.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaroszuk-Ściseł, J., Kurek, E. Hydrolysis of fungal and plant cell walls by enzymatic complexes from cultures of Fusarium isolates with different aggressiveness to rye (Secale cereale). Arch Microbiol 194, 653–665 (2012). https://doi.org/10.1007/s00203-012-0803-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-012-0803-4

Keywords

Navigation