Skip to main content
Log in

New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In the present study cultivation-dependent and molecular methods were applied in combination to investigate the arsenite-oxidizing communities in enrichment cultures from arsenic and lead smelter-impacted soils with respect to both 16S rRNA and arsenite oxidase gene diversity. Enrichments with arsenite as the only electron donor resulted in completely different communities than enrichments with yeast extract and the simultaneous presence of arsenite. The lithoautotrophic community appeared to be dominated by Ferrimicrobium-related Actinobacteria, unusual Acidobacteria, Myxobacteria, and α-Proteobacteria but the heterotrophic community comprised many Dokdonella-related γ-Proteobacteria. Gene sequences of clones encoding arsenite oxidase from the enrichment for lithoautotrophs belonged to three major clusters with sequences from non-cultivated microorganisms. So, primers used to detect arsenite oxidase genes could amplify the genes from many α-, β- and γ-Proteobacteria, but not from various strains of the other phyla present in the enrichment for lithotrophs. This was also observed for the isolates where arsenite oxidase genes from new proteobacterial isolates of the genera Burkholderia, Bosea, Alcaligenes, Bradyrhizobium and Methylobacterium could be amplified but the genes of the new Rhodococcus isolate S43 could not. The results indicate that the ability to oxidize arsenite is widespread in various unusual taxa, and molecular methods for their detection require further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    PubMed  CAS  Google Scholar 

  • Anderson GL, Williams J, Hille R (1992) The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum containing hydroxylase. J Biol Chem 267:23674–23682

    PubMed  CAS  Google Scholar 

  • Battaglia-Brunet F, Dictor MC, Garrido F et al (2002) An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Article  PubMed  CAS  Google Scholar 

  • Battaglia-Brunet F, Itard Y, Garrido F, Delorme F, Crouzet C, Greffie C, Joulian C (2006) A simple biogeochemical process removing arsenic from a mine drainage water. Geomicrobiol J 23:201–211

    Article  CAS  Google Scholar 

  • Breuker A, Blazejak A, Bosecker K, Schippers A (2009) Diversity of iron oxidizing bacteria from various sulfidic mine waste dumps. In: Donati ER, Viera MR, Tavani EL, Giaveno TM, Lavalle TL, Chiacchiarini PA (eds) Advanced materials research, vols 71–73. Trans Tech Publications Inc., Stafa-Zurich, pp 47–50

    Google Scholar 

  • Bürgmann H, Pesaro M, Widmer F, Zeyer J (2001) A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol Methods 45:7–20

    Article  PubMed  Google Scholar 

  • Chang JS, Kim YH, Kim KW (2008) The ars genotype characterization of arsenic-resistant bacteria from arsenic-contaminated gold–silver mines in the Republic of Korea. Appl Microbiol Biotechnol 80:155–165

    Article  PubMed  CAS  Google Scholar 

  • Chang JS, Yoon IH, Lee JH, Kim KR, An J, Kim KW (2010) Arsenic detoxification potential of aox genes in arsenite-oxidizing bacteria isolated from natural and constructed wetlands in the Republic of Korea. Environ Geochem Health 32:95–105

    Article  PubMed  CAS  Google Scholar 

  • Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10:228–237

    PubMed  CAS  Google Scholar 

  • Ehinger S, Seifert J, Kassahun A, Schmalz L, Hoth N, Schlömann M (2009) Predominance of Methanolobus spp. and Methanoculleus spp. in archaeal communities of saline gas field formation fluids. Geomicrobiol J 26:326–338

    Article  CAS  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132

    Article  PubMed  CAS  Google Scholar 

  • Fan H, Su C, Wang Y, Yao J, Zhao K, Wang Y, Wang G (2008) Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105:529–539

    Article  PubMed  CAS  Google Scholar 

  • Gihring TM, Banfield JF (2001) Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol Lett 204:335–340

    Article  PubMed  CAS  Google Scholar 

  • Hamamura N, Macur RE, Korf S et al (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431

    Article  PubMed  CAS  Google Scholar 

  • Heinzel E, Janneck E, Glombitza F, Schlömann M, Seifert J (2009a) Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters. Environ Sci Technol 43:6138–6144

    Article  PubMed  CAS  Google Scholar 

  • Heinzel E, Hedrich S, Janneck E, Glombitza F, Seifert J, Schlömann M (2009b) Bacterial diversity in a mine water treatment plant. Appl Environ Microbiol 75:858–861

    Article  PubMed  CAS  Google Scholar 

  • Inskeep WP, Macur RE, Hamamura N, Warelow TP, Ward SA, Santini JM (2007) Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol 9:934–943

    Article  PubMed  CAS  Google Scholar 

  • Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Kutschera K, Schmidt AC, Köhler S, Otto M (2007) CZE for the speciation of arsenic in aqueous soil extracts. Electrophoresis 28:3466–3476

    Article  PubMed  CAS  Google Scholar 

  • Mirete S, de Figueras CG, Gonzalez-Pastor JE (2007) Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl Environ Microbiol 73:6001–6011

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. J Bacteriol 185:135–141

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    Article  PubMed  CAS  Google Scholar 

  • Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolate of Alcaligenes. J Appl Bacteriol 41:295–305

    Article  PubMed  CAS  Google Scholar 

  • Phillips SE, Taylor ML (1976) Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl Environ Microbiol 32:392–399

    CAS  Google Scholar 

  • Quemeneur M, Heinrich-Salmeron A, Muller D et al (2008) Diversity surveys and evolutionary relationships of aoxB genes in aerobic arsenite-oxidizing bacteria. Appl Environ Microbiol 74:4567–4573

    Article  PubMed  CAS  Google Scholar 

  • Rhine ED, Ni Chadhain SM, Zylstra GJ, Young LY (2007) The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem Biophys Res Commun 354:662–667

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santini JM, vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614–1619

    Article  PubMed  CAS  Google Scholar 

  • Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97

    Article  PubMed  CAS  Google Scholar 

  • Santini JM, Sly LI, Wen A, Comrie D, De Wulf-Durand P, Macy JM (2002) New arsenite-oxidizing bacteria isolated from Australian gold mining environments–phylogenetic relationships. Geomicrobiol J 19:67–76

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  PubMed  CAS  Google Scholar 

  • Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  PubMed  CAS  Google Scholar 

  • vanden Hoven RN, Santini JM (2004) Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14: the arsenite oxidase and its physiological electron acceptor. Biochim Biophys Acta 1656:148–155

    Article  Google Scholar 

Download references

Acknowledgments

M. Sultana is supported by a PhD grant from DAAD. The authors would like to thank Professor Tim McDermott, Montana State University, Bozeman, USA, for providing the positive control for arsenite oxidase gene analysis for this study. Additional thanks are due to Dr. Mollee and Mr. Fritz from Saxonia Standortentwicklungs- und -Verwaltungs Gesellschaft, Freiberg, Germany, for their co-operation during sample collection and for providing chemical data of soil samples. We would like to thank Beate Erler and Janosch Gröning for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schlömann.

Additional information

Communicated by Harald Huber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sultana, M., Vogler, S., Zargar, K. et al. New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch Microbiol 194, 623–635 (2012). https://doi.org/10.1007/s00203-011-0777-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0777-7

Keywords

Navigation