Skip to main content
Log in

Characterization of long-chain fatty acid uptake in Caulobacter crescentus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Studies evaluating the uptake of long-chain fatty acids in Caulobacter crescentus are consistent with a protein-mediated process. Using oleic acid (C18:1) as a substrate, fatty acid uptake was linear for up to 15 min. This process was saturable giving apparent Vmax and Km values of 374 pmol oleate transported/min/mg total protein and 61 μM oleate, respectively, consistent with the notion that one or more proteins are likely involved. The rates of fatty acid uptake in C. crescentus were comparable to those defined in Escherichia coli. Uncoupling the electron transport chain inhibited oleic acid uptake, indicating that like the long-chain fatty acid uptake systems defined in other gram-negative bacteria, this process is energy-dependent in C. crescentus. Long-chain acyl CoA synthetase activities were also evaluated to address whether vectorial acylation represented a likely mechanism driving fatty acid uptake in C. crescentus. These gram-negative bacteria have considerable long-chain acyl CoA synthetase activity (940 pmol oleoyl CoA formed/min/mg total protein), consistent with the notion that the formation of acyl CoA is coincident with uptake. These results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abumrad N, Harmon C, Ibrahimi A (1998) Membrane transport of long-chain fatty acids: evidence for a facilitated process. J Lipid Res 39:2309–2318

    PubMed  CAS  Google Scholar 

  • Azizan A, Black P (1994) Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: the periplasmic protein Tsp potentiates long-chain fatty acid transport. J Bacteriol 176:6653–6662

    PubMed  CAS  Google Scholar 

  • Azizan A, Sherin D, DiRusso C, Black P (1999) Energetics underlying the process of long-chain fatty acid transport. Arch Biochem Biophys 365:299–306

    Article  PubMed  CAS  Google Scholar 

  • Bar-Tana J, Rose G, Shapiro B (1971) The purification and properties of microsomal Palmitoyl-coenzyme A synthetase. Biochem J 122:353–362

    PubMed  CAS  Google Scholar 

  • Black P, DiRusso C, Metzger A, Heimert T (1992) Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding Acyl coenzyme A synthetase. J Biol Chem 267:25513–25520

    PubMed  CAS  Google Scholar 

  • Black P, Zhang Q, Weimar J, DiRusso C (1997) Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 272:4896–4903

    Article  PubMed  CAS  Google Scholar 

  • Black P, DiRusso C, Sherin D, MacColl R, Knudsen J, Weimar J (2000) Affinity labeling fatty acyl CoA synthetase with 9-p-azidophenoxy nonanoic acid and the identification of the fatty acid-binding site. J Biol Chem 275:38547–38553

    Article  PubMed  CAS  Google Scholar 

  • DiRusso C, Black P (1999) Long chain fatty acid transport in bacteria and yeast. Paradigms for defining the mechanism underlying this protein-mediated process. Mol Cell Biochem 192:41–52

    Article  PubMed  CAS  Google Scholar 

  • DiRusso C, Black P, Weimar J (1999) Molecular inroads into the regulation and metabolism of fatty acid; lessons from bacteria. Prog Lipid Res 38:129–197

    Article  PubMed  CAS  Google Scholar 

  • Ginsburgh C, Black P, Nunn W (1984) Transport of long chain fatty acids in Escherichia coli. J Biol Chem 259:8437–8443

    PubMed  CAS  Google Scholar 

  • Hamilton J, Kamp F (1999) How are free fatty acids transported in membranes? Diabetes 48:2255–2269

    Article  PubMed  CAS  Google Scholar 

  • Hottes A, Meewan M, Yang D, Arana N, Romero P, McAdams H, Stephens C (2004) Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J Bacteriol 186:1448–1461

    Article  PubMed  CAS  Google Scholar 

  • Johnson R, Ely B (1977) Isolation of spontaneously derived mutants of Caulobacter crescentus. Genetics 86:25–32

    PubMed  CAS  Google Scholar 

  • Kumar G, Black P (1991) Linker mutagenesis of a bacterial fatty acid transport protein. J Biol Chem 266:1348–1353

    PubMed  CAS  Google Scholar 

  • Kumar G, Black P (1993) Bacterial long-chain fatty acid transport. Identification of amino acid residues within the outer membrane protein FadL required for activity. J Biol Chem 268:15469–15476

    PubMed  CAS  Google Scholar 

  • Lagenaur C, Agabian N (1978) Caulobacter flagellar organelle: synthesis, compartmentation, and assembly. J Bacteriol 135:1062–1069

    PubMed  CAS  Google Scholar 

  • Lawler M, Brun Y (2007) Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus. Curr Opin Microbiol 10:630–637

    Article  PubMed  CAS  Google Scholar 

  • Lowey B, Marczynski G, Dingwall A, Shapiro L (1990) Regulatory interactions between phospholipids synthesis and DNA replication in Caulobacter crescentus. J Bacteriol 172:5523–5530

    Google Scholar 

  • Maloy S, Ginsburgh C, Simons R, Nunn W (1981) Transport of long and medium chain fatty acids by Escherichia coli K12. J Biol Chem 256:3735–3742

    PubMed  CAS  Google Scholar 

  • Mansour J, Henry S, Shapiro L (1980) Differential membrane phospholipid synthesis during the cell cycle of Caulobacter crescentus. J Bacteriol 143:262–269

    Google Scholar 

  • Mansour J, Henry S, Shapiro L (1981) Phospholipid biosynthesis is required for stalk elongation in Caulobacter crescentus. J Bacteriol 145:1404–1409

    PubMed  CAS  Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Nierman W et al (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci USA 98:4136–4141

    Article  PubMed  CAS  Google Scholar 

  • O’Connell M, Henry S, Shapiro L (1986) Fatty acid degradation in Caulobacter crescentus. J Bacteriol 168:49–54

    PubMed  Google Scholar 

  • van den Berg B, Black P, Clemons W, Rapoport T (2004) Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks go to Chris Petteys, who assisted on preliminary experiments, and to the members of the laboratory of Paul Black and Concetta DiRusso for helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Zalatan.

Additional information

Communicated by Theo Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zalatan, F., Black, P. Characterization of long-chain fatty acid uptake in Caulobacter crescentus . Arch Microbiol 193, 479–487 (2011). https://doi.org/10.1007/s00203-011-0694-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0694-9

Keywords

Navigation