Skip to main content

Advertisement

Log in

Identification and functional analysis of a nitrate assimilation operon nasACKBDEF from Amycolatopsis mediterranei U32

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Nitrate assimilation has been well studied for Gram-negative bacteria but not so much in the Gram-positive actinomycetes up to date. In a rifamycin SV-producing actinomycete, Amycolatopsis mediterranei strain U32, nitrate not only can be used as a sole nitrogen source but also remarkably stimulates the antibiotic production along with regulating the related metabolic enzymes. A gene cluster of nasACKBDEF was cloned from a U32 genomic library by in situ hybridization screening with a heterogeneous nasB probe and confirmed later by whole genome sequence, corresponding to the protein coding genes of AMED_1121 to AMED_1127. These genes were co-transcribed as an operon, concomitantly repressed by ammonium while activated with supplement of either nitrate or nitrite. Genetic and biochemical analyses identified the essential nitrate/nitrite assimilation functions of the encoded proteins, orderly, the assimilatory nitrate reductase catalytic subunit (NasA), nitrate reductase electron transfer subunit (NasC), nitrate/nitrite transporter (NasK), assimilatory nitrite reductase large subunit (NasB) and small subunit (NasD), bifunctional uroporphyrinogen-III synthase (NasE), and an unknown function protein (NasF). Comparing rifamycin SV production and the level of transcription of nasB and rifE from U32 and its individual nas mutants in Bennet medium with or without nitrate indicated that nitrate assimilation function encoded by the nas operon played an essential role in the “nitrate stimulated” rifamycin production but had no effect upon the transcription regulation of the primary and secondary metabolic genes related to rifamycin biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bell LC, Richardson DJ, Ferguson SJ (1990) Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha: the periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett 265:85–87

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brondijk TH, Fiegen D, Richardson DJ, Cole JA (2002) Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol Microbiol 44:245–255

    Article  PubMed  CAS  Google Scholar 

  • Chiao JS, Xia T, Mei BG, Jin ZK, Gu WL (1996) Rifamycin SV and related ansamycins, regulation of biosynthesis. In: Vining LC, Stuttard C (eds) Genetics and biochemistry of antibiotic production. Butterworth-Heinemann, Boston, pp 477–498

    Google Scholar 

  • Clegg S, Yu F, Griffiths L, Cole JA (2002) The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol 44:143–155

    Article  PubMed  CAS  Google Scholar 

  • Cole ST et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • Ding XM, Zhang N, Tian YQ, Jiang WH, Zhao GP, Jiao RS (2002) Establishment of gene replacement/disruption system through homologous recombination in Amycolatopsis mediterranei U32. Chin J Biotechnol 18:431–437

    CAS  Google Scholar 

  • Ding X, Tian Y, Chiao J, Zhao G, Jiang W (2003) Stability of plasmid pA387 derivatives in Amycolatopsis mediterranei producing rifamycin. Biotechnol Lett 25:1647–1652

    Article  PubMed  CAS  Google Scholar 

  • EI-Tayeb OM, Salama AA, Hussein MMM, EI-Sedawy HF (2004) Optimization of industrial production of rifamycin B by Amycolatopsis mediterranei. I. The role of colony morphology and nitrogen sources in productivity. Afr J Biotechnol 3:266–272

    CAS  Google Scholar 

  • Fernandez E, Galvan A, Quesada A (1998) Nitrogen assimilation and its regulation. In: Rochaix JD, Goldschmidt-Clermont M, Merchant S (eds) The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer Academic Publisher, Dordrecht, pp 637–659

    Google Scholar 

  • Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347

    Article  PubMed  CAS  Google Scholar 

  • Gadadkar R, Gopinathan KP (1980) Growth of Mycobacterium smegmatis in minimal and complete media. J Biosci 2:337–348

    Article  Google Scholar 

  • Gonzalez PJ, Correia C, Moura I, Brondino CD, Moura JJ (2006) Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Gust B, Kieser T, Chater KF (2002) REDIRECT technology: PCR-targeting system in Streptomyces coelicolor. John Innes Foundation, Norwich

    Google Scholar 

  • Hoffmann T, Troup B, Szabo A, Hungerer C, Jahn D (1995) The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett 131:219–225

    Article  PubMed  CAS  Google Scholar 

  • Hopwood DA et al (1985) Genetic manipulation of Streptomyces: a laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  • Jiang S, Huang WY (2004) Improvement of fermentation conditions for azalomycin B produced by Streptomyces hygroscopicus NND-52-C. Chin J Bioprocess Eng 2:53–57

    Google Scholar 

  • Jiao RS, Chen YM, Wu MG, Gu WL (1979) Studies on the metabolic regulation of biosynthesis of rifamycin by Norcadia (Amycolatopsis) mediterranei. I. The stimulative effect of nitrate on biosynthesis of rifamycin SV by Nocardia mediterranei. Acta Phytophysiol Sin 5:395–402

    Google Scholar 

  • Jin Z, Jiao RS (1997) Stimulative effects of nitrate and magnesium salts on biosynthesis of lincomycin by Streptomyces lincolnensis. Chin Biochem J 13:709–715

    CAS  Google Scholar 

  • Keulen G, Alderson J, White J, Sawers RG (2005) Nitrate respiration in the actinomycete Streptomyces coelicolor. Biochem Soc Trans 33:210–212

    Article  PubMed  Google Scholar 

  • Kieser T, Bibb MJ, Buttner M, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kumar CV, Coque JJ, Martin JF (1994) Efficient transformation of the cephamycin C producer Nocardia lactamdurans and development of shuttle and promoter-probe cloning vectors. Appl Environ Microbiol 60:4086–4093

    PubMed  CAS  Google Scholar 

  • Lal R, Lal S (1994) Recent trends in rifamycin research. Bioassays 16:211–216

    Article  CAS  Google Scholar 

  • Lal R, Lal S, Grund E, Eichenlaub R (1991) Construction of a hybrid plasmid capable of replication in Amycolatopsis mediterranei. Appl Environ Microbiol 57:665–671

    PubMed  CAS  Google Scholar 

  • Li GL, Chiao JS (1995) Nitrate assimilation of Amycolatopsis mediterranei U32 and some properties of its nitrate reductase. Acta Microbiol Sin 35:141–148

    CAS  Google Scholar 

  • Li GL, Yang YL, Chiao RS (1998) Localization, purification and characterization of nitrate reductase from Amycolatopsis mediterranei U 32. Chin J Biochem Mol Bio 14:710–714

    CAS  Google Scholar 

  • Lin JT, Goldman BS, Stewart V (1994) The nasFEDCBA operon for nitrate and nitrite assimilation in Klebsiella pneumoniae M5al. J Bacteriol 176:2551–2559

    PubMed  CAS  Google Scholar 

  • Lledo B, Marhuenda-Egea FC, Martinez-Espinosa RM, Bonete MJ (2005) Identification and transcriptional analysis of nitrate assimilation genes in the halophilic archaeon Haloferax mediterranei. Gene 361:80–88

    Article  PubMed  CAS  Google Scholar 

  • Malm S et al (2009) The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155:1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ (2001a) Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterisation. FEMS Microbiol Lett 204:381–385

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Espinosa RM, Marhuenda-Egea FC, Bonete MJ (2001b) Purification and characterisation of a possible assimilatory nitrite reductase from the halophile archaeon Haloferax mediterranei. FEMS Microbiol Lett 196:113–118

    Article  PubMed  CAS  Google Scholar 

  • Mei BG, Chiao J (1986) Studies on glutamine synthetase from Nocardia mediterranei. II. Regulation of enzyme activity and some kinetic properties. Acta Biochim Biophys Sin 18:500–511

    Google Scholar 

  • Mejia A, Barrios-Gonzalez J, Viniegra-Gonzalez G (1998) Overproduction of rifamycin B by Amycolatopsis mediterranei and its relationship with the toxic effect of barbital on growth. J Antibiot (Tokyo) 51:58–63

    CAS  Google Scholar 

  • Moir JW, Wood NJ (2001) Nitrate and nitrite transport in bacteria. Cell Mol Life Sci 58:215–224

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    PubMed  CAS  Google Scholar 

  • Ni LY, Liu CJ, Jin ZK, Chiao JS (1984) A positive correlation between rifamycin SV biosynthesis and the activity of glutamine synthetase. Acta Microbiol Sin 24:217–223

    CAS  Google Scholar 

  • Nishimura T, Vertes AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    Article  PubMed  CAS  Google Scholar 

  • Ogawa KI et al (1995) The nasB operon and nasA Gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J Bacteriol 177:1409–1413

    PubMed  CAS  Google Scholar 

  • Pantel I, Lindgren PE, Neubauer H, Gotz F (1998) Identification and characterization of the Staphylococcus carnosus nitrate reductase operon. Mol Gen Genet 259:105–114

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schnell R, Sandalova T, Hellman U, Lindqvist Y, Schneider G (2005) Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys-Tyr bond in the active site. J Biol Chem 280:27319–27328

    Article  PubMed  CAS  Google Scholar 

  • Sharma V, Noriega CE, Rowe JJ (2006) Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:695–701

    Article  PubMed  CAS  Google Scholar 

  • Shoun H, Kano M, Baba I, Takaya N, Matsuo M (1998) Denitrification by actinomycetes and purification of dissimilatory nitrite reductase and azurin from Streptomyces thioluteus. J Bacteriol 180:4413–4415

    PubMed  CAS  Google Scholar 

  • Shu D et al (2009) afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 81:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui RA, Warnecke-Eberz U, Hengsberger A, Schneider B, Kostka S, Friedrich B (1993) Structure and function of a periplasmic nitrate reductase in Alcaligenes eutrophus H16. J Bacteriol 175:5867–5876

    PubMed  CAS  Google Scholar 

  • Sohaskey CD (2005) Regulation of nitrate reductase activity in Mycobacterium tuberculosis by oxygen and nitric oxide. Microbiology 151:3803–3810

    Article  PubMed  CAS  Google Scholar 

  • Sohaskey CD, Wayne LG (2003) Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185:7247–7256

    Article  PubMed  CAS  Google Scholar 

  • Solomonson LP, Barber MJ (1990) Assimilatory nitrate reductase: functional properties and regulation. Annu Rev Plant Physiol Mol Biol 41:225–253

    Article  CAS  Google Scholar 

  • Stewart V, Cali BM (1990) Genetic evidence that NarL function is not required for nitrate regulation of nitrate assimilation in Klebsiella pneumoniae M5al. J Bacteriol 172:4482–4488

    PubMed  CAS  Google Scholar 

  • Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhao GP (2009) GlnR positively regulates nasA transcription in Streptomyces coelicolor. Biochem Biophys Res Commun 386:77–81

    Article  PubMed  CAS  Google Scholar 

  • Wang W et al (2002) MoeA, an enzyme in the molybdopterin synthesis pathway, is required for rifamycin SV production in Amycolatopsis mediterranei U32. Appl Microbiol Biotechnol 60:139–146

    Article  PubMed  CAS  Google Scholar 

  • Weber I, Fritz C, Ruttkowski S, Kreft A, Bange FC (2000) Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol 35:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Stewart V (1998) NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al. J Bacteriol 180:1311–1322

    PubMed  CAS  Google Scholar 

  • Yao Y, Zhang W, Jiao R, Zhao G, Jiang W (2002) Efficient isolation of total RNA from antibiotic-producing bacterium Amycolatopsis mediterranei. J Microbiol Methods 51:191–195

    Article  PubMed  CAS  Google Scholar 

  • Yu TW et al (1999) Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. Proc Natl Acad Sci USA 96:9051–9056

    Article  PubMed  CAS  Google Scholar 

  • Zhao W et al (2010) Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 20:1096–1108

    Article  PubMed  CAS  Google Scholar 

  • Zhou XY, Wang HZ (1995) Study of lividomycin produced by lividomycin producer M814. J Zhejiang Univ Technol 23:67–72

    Google Scholar 

Download references

Acknowledgments

We thank Ying Wang for supplying the strain and Yi Zhong for helpful sequence analysis. The work was financially supported by NSFC (Grant No. 30830002) and Natural Science Foundation of Shanghai, China (Grant No. 11ZR1442900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhao.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2011_690_MOESM1_ESM.ppt

Fig. S1 Time-course change of cell growth and nitrite extrusion of NK32 (nasK ) in Bennet medium with 20 mM KNO3 or 5 mM KNO3. (PPT 61 kb)

203_2011_690_MOESM2_ESM.ppt

Fig. S2 Time-course change of cell growth and nitrite extrusion of NE32 (nasE ) and U32 in minimal medium with 70 mM proline or 2 mM NaNO2. (PPT 60 kb)

Supplementary material 3 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, Z., Gao, J., Ding, X. et al. Identification and functional analysis of a nitrate assimilation operon nasACKBDEF from Amycolatopsis mediterranei U32. Arch Microbiol 193, 463–477 (2011). https://doi.org/10.1007/s00203-011-0690-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-011-0690-0

Keywords

Navigation