Skip to main content

Advertisement

Log in

Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Anthracnose, caused by the fungus Colletotrichum acutatum is one of the most important diseases in strawberry crop. Due to environmental pollution and resistance produced by chemical fungicides, nowadays biological control is considered a good alternative for crop protection. Among biocontrol agents, there are plant growth-promoting bacteria, such as members of the genus Azospirillum. In this work, we demonstrate that under iron limiting conditions different strains of A. brasilense produce siderophores, exhibiting different yields and rates of production according to their origin. Chemical assays revealed that strains REC2 and REC3 secrete catechol type siderophores, including salicylic acid, detected by thin layer chromatography coupled with fluorescence spectroscopy and gas chromatography–mass spectrometry analysis. Siderophores produced by them showed in vitro antifungal activity against C. acutatum M11. Furthermore, this latter coincided with results obtained from phytopathological tests performed in planta, where a reduction of anthracnose symptoms on strawberry plants previously inoculated with A. brasilense was observed. These outcomes suggest that some strains of A. brasilense could act as biocontrol agent preventing anthracnose disease in strawberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adaskaveg JE, Hartin RJ (1997) Characterization of Colletotrichum acutatum isolates causing anthracnose of almond and peach in California. Phytopathology 87(9):979–987. doi:10.1094/phyto.1997.87.9.979

    Article  PubMed  CAS  Google Scholar 

  • Arnow LE (1937) Colorimetric determination of the components of 3, 4 dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Atkin C, Neilands J, Phaff H (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporodiobolus, and Sporobolomyces and a new alanine containing ferrichrome from Criptcoccus melibiosum. J Bacteriol 103(3):722–733

    PubMed  Google Scholar 

  • Bachhawaat AK, Ghogh S (1987) Iron transport in Azospirillum brasilense: role of the siderophore spirilobactin. J Gen Microbiol 133:1759–1765. doi:10.1099/00221287-133-7-1759

    Google Scholar 

  • Bachhawaat AK, Ghogh S (1989) Temperature inhibition of siderophore production by Azosprillum brasilense. J Bacteriol 171(7):4092–4094

    Google Scholar 

  • Bakanchikova TI, Lobanok EV, Pavlova-Ivanova LK, Redkina TV, Nagapetyan ZA, Majsuryan AN (1993) Inhibition of tumor formation process in dicotyledonous plants by Azospirillum brasilense strains. Microbiology 62(3):515–523

    Google Scholar 

  • Baldani VLD, Döbereiner J (1980) Host-plant specificity in the infection of cereals with Azospirillum spp. Soil Biol Biochem 12(4):433–439. doi:10.1016/0038-0717(80)90021-8

    Article  Google Scholar 

  • Bashan Y (1986) Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biol Biochem 18(3):297–301. doi:10.1016/0038-0717(86)90064-7

    Article  Google Scholar 

  • Bashan Y, de-Bashan LE (2002a) Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 68(6):2637–2643. doi:10.1128/aem.68.6

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2002b) Reduction of bacterial speck (Pseudomonas syringae pv. tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemo-thermal seed treatment. Eur J Plant Pathol 108:821–829

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1985) An improved selection technique and medium for the isolation and enumeration of Azospirillum brasilense. Can J Microbiol 31:947–952

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36(9):591–608

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, and environmental advances (1997–2003). Can J Microbiol 50(8):521–577. doi:10.1139/w04-035

    Article  PubMed  CAS  Google Scholar 

  • Bothe H, Korsgen H, Lehmacher T, Hundeshagen B (1992) Differential effects of Azospirillum, auxin and combined nitrogen on the growth of the roots of wheat. Symbiosis 13(13):167–179

    CAS  Google Scholar 

  • Boyer M, Bally R, Perrotto S, Chaintreuil C, Wisniewski-Dye F (2008) A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. Res Microbiol 159:699–708. doi:10.1016/j.resmic.2008.08.003

    Article  PubMed  CAS  Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62(3):865–871

    PubMed  CAS  Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25(11):1919–1928. doi:10.1007/s11274-009-0090-7

    Article  Google Scholar 

  • Cornelis P, Matthisj S (2007) Pseudomonas siderophores and their biological significance. In: Ajit V, Chincholkar SB (eds) Microbial siderophores (Soil Biology). Heidelberg, Berlin, Germany, pp 193–200

    Chapter  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  PubMed  CAS  Google Scholar 

  • Crowley DE (2006) Microbial siderophores in the plant rhizospheric. In: Barton LL, Abadía J (eds) Iron nutrition in plants and rhizospheric microorganisms. Springer, Netherlands, pp 169–198

    Chapter  Google Scholar 

  • Dave BP, Dube HC (2000) Regulation of siderophore production by iron Fe(III) in certain fungi and fluorescent Pseudomonas. Ind J Exptl Biol 38:297–299

    CAS  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87(6):588–593. doi:10.1094/phyto.1997.87.6.588

    Article  PubMed  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266(5158):1247–1250. doi:10.1126/science.266.5188.1247

    Article  PubMed  CAS  Google Scholar 

  • Delp BR, Milholland RD (1980) Evaluating strawberry plants for resistance to Colletotrichum fragariae. Plant Dis 64:1071–1073

    Article  Google Scholar 

  • Freeman S, Katan T (1997) Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology 87(5):516–521

    Article  PubMed  CAS  Google Scholar 

  • Glick BL, Pattern CN, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772. doi:10.1146/annurev.mi.48.100194.003523

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Arora DK, Srivastava AK (1995) Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol Biochem 27:1051–1058

    Article  CAS  Google Scholar 

  • Hassouna M, El-Saedy AM, Saleh HMA (1998) Biocontrol of soil-borne plant pathogens attacking cucumber (Cucumis sativus) by rhizobacteria in a semiarid environment. Arid Soil Res Rehabil 12(4):345–357. doi:10.1080/15324989809381523

    CAS  Google Scholar 

  • Holguin G, Patten CL, Glick BR (1999) Genetics and molecular biology of Azospirillum. Biol Fertil Soils 29:10–23

    Article  CAS  Google Scholar 

  • Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic acid, yersiniabactin, and pyoverdin production by the model phytopathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J Bacteriol 189(19):6773–6786. doi:10.1128/JB.00827-07

    Article  PubMed  CAS  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155. doi:10.1094/phyto-86-149

    Article  CAS  Google Scholar 

  • Lewenza S, Conway B, Greenberg EP, Sokol PA (1999) Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181(3):748–756

    PubMed  CAS  Google Scholar 

  • Liu ZD, Liu DY, Hider RC (2002) Development of new iron chelators. In: Hershko C (ed) Iron chelation therapy. Springer, New York, pp 141–150

    Google Scholar 

  • Loper JE, Buyer JS (1992) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4(1):5–13

    Article  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88(7):678–684. doi:10.1094/phyto.1998.88.7.678

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Azelvandre P, Georges C (1992) Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomuna fluorescens CHAO. Biofactors 4(1):23–27

    PubMed  CAS  Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Mol Biol Rev 71(3):413–451. doi:10.1128/mmbr.00012-07

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev of Biochem 50:715–773. doi:10.1146/annurev.bi.50.070181.003435

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. doi:10.1074/jbc.270.45.26723

    PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56(4):662–676

    PubMed  Google Scholar 

  • Okon Y (1985) Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3(9):223–228. doi:10.1016/0167-7799(85)90012-5

    Article  Google Scholar 

  • Oliveira R, Drozdowicz A (1987) Inhibition of bacteriocin producing strains of Azospirillum lipoferum by their own bacteriocin. Zentbl Microbiol 142:387–397

    Google Scholar 

  • Pedraza RO, Motok J, Tortora ML, Salazar SM, Díaz Ricci JC (2007) Natural occurrence of Azospirillum brasilense in strawberry plants. Plant Soil 295:169–178. doi:10.1007/s11104-007-9273-x

    Article  CAS  Google Scholar 

  • Pedraza RO, Motok J, Salazar SM, Ragout A, Mentel MI, Tortora ML, Guerrero Molina MF, Winik BC, Díaz Ricci JC (2010) Growth-promotion of strawberry plants inoculated with Azospirillum brasilense. World J Microbiol Biotechnol 26(2):265–272. doi:10.1007/s11274-009-0169-1

    Article  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90–166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant-Microbe Interact 10(6):761–768. doi:10.1094/mpmi.1997.10.6.761

    Article  CAS  Google Scholar 

  • Rodríguez Cáceres EA (1982) Improved medium for isolation of Azospirillum spp. Appl Environ Microbiol 44(4):990–991

    Google Scholar 

  • Romero AM, Correa O, Moccia S, Rivas JG (2003) Effect of Azospirillum mediated plant growth promotion on the development of bacterial diseases on fresh-market and cherry tomato. J Appl Microbiol 95:832–838. doi:10.1046/j.1365-2672.2003.02053.x

    Article  PubMed  CAS  Google Scholar 

  • Russo A, Vettori L, Felici C, Fiaschi G, Morini S, Toffanin A (2008) Enhanced micropropagation response and biocontrol effect of Azospirillum brasilense Sp245 on Prunus cerasifera L. clone Mr.S 2/5 plants. J Biotechnol 134:312–319. doi:10.1016/j.jbiotec.2008.01.020

    Article  PubMed  CAS  Google Scholar 

  • Salazar SM, Castagnaro AP, Arias ME, Chalfoun N, Tonello U, Díaz Ricci JC (2007) Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur J Plant Pathol 117:109–122. doi:10.1007/s10658-006-9075-7

    Article  Google Scholar 

  • Saxena B, Modi M, Modi VV (1986) Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J Gen Microbiol 132:2219–2224

    CAS  Google Scholar 

  • Sayyed RZ, Chincholkar SB (2009) Siderophore-producing Alcaligenes feacalis exhibited more biocontrol potential Vis-a`-Vis chemical fungicide. Curr Microbiol 58:47–51. doi:10.1007/s00284-008-9264-z

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. doi:10.1016/0003-2697(87)90612-9

    Article  PubMed  CAS  Google Scholar 

  • Serino L, Reimmann C, Baur H, Beyeler M, Visca P, Haas D (1995) Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa. Mol Gen Genet 249(2):217–228

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Karkhanis V, Desai A (1992) Isolation and characterization of siderophore, with antimicrobial activity from Azospirillum lipoferum M. Curr Microbiol 25(6):34–35. doi:10.1007/bf01577233

    Article  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J Phytopathol 152:48–54. doi:10.1046/j.1439-0434.2003.00800.x

    Article  Google Scholar 

  • Siddiqui IA, Shaukat S (2005) Pseudomonas aeruginosa mediated induction of systemic resistance in tomato against root knot nematode. J Phytopathol 4(1):21–25. doi:10.3923/ppj.2005.21.25

    Google Scholar 

  • Smith BJ, Black LL (1990) Morphological, cultural and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis 74(1):69–76

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi:10.1111/j.1574-6976.2007.00072

    Article  PubMed  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen- fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506. doi:10.1111/j.1574-6976.2000.tb00552.x

    Article  PubMed  CAS  Google Scholar 

  • Sudhakar P, Gangwar SK, Satpathy B, Sahu PK, Ghosh JK, Saratchandra B (2000) Evaluation of some nitrogen fixing bacteria for control of foliar diseases of mulberry (Morus alba). Indian J Sericult 39:9–11

    Google Scholar 

  • Tapia-Hernández A, Mascarua-Esparza MA, Caballero-Mellado J (1990) Production of bacteriocins and siderophore-like activity in Azospirillum brasilense. Microbios 64:73–83

    PubMed  Google Scholar 

  • Visca P, Ciervo A, San Filippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139(9):1995–2001

    PubMed  CAS  Google Scholar 

  • Xiao CL, Mackenzie SJ, Legard DE (2004) Genetic and pathogenic analyses of Colletotrichum gloeosporioides isolates from strawberry and noncultivated hosts. Phytopathology 94(5):446–453. doi:10.1094/phyto.2004.94.5.446

    Article  PubMed  CAS  Google Scholar 

  • Yasuda M, Isawa T, Minamisawa K, Shinozaki S, Nakashita H (2009) Effects of colonization of a bacterial endophyte, Azospirillum sp B510 on disease resistance in rice. Biosci Biotechnol Biochem 73(12):2595–2599. doi:10.1271/bbb.90402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by CIUNT and Agencia Nacional de Promoción Científica y Tecnológica (PICT 2007 N° 472). MLT is a fellow and JCDR researcher of CONICET, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl O. Pedraza.

Additional information

Communicated by Jorge Membrillo-Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tortora, M.L., Díaz-Ricci, J.C. & Pedraza, R.O. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193, 275–286 (2011). https://doi.org/10.1007/s00203-010-0672-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0672-7

Keywords

Navigation