Skip to main content

Advertisement

Log in

On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Aerobic anoxygenic phototrophs (AAPs) are prokaryotic microorganisms capable of harvesting light using bacteriochlorophyll-based reaction centres. Marine AAP communities are generally dominated by species belonging to the Roseobacter clade. For this reason, we used marine Roseobacter-related strain COL2P as a model organism to characterize its photosynthetic apparatus, level of pigmentation and expression of photosynthetic complexes. This strain contained functional photosynthetic reaction centres with bacteriochlorophyll a and spheroidenone as the main light-harvesting pigments, but the expression of the photosynthetic apparatus was significantly reduced when compared to truly photoautotrophic species. Moreover, the absence of peripheral light-harvesting complexes largely reduced its light-harvesting capacity. The size of the photosynthetic unit was limited to 35.4 ± 1.0 BChl a molecules supplemented by the same number of spheroidenone molecules. The contribution of oxidative phosphorylation and photophosphorylation was analysed by respiration and fluorometric measurements. Our results indicate that even with a such reduced photosynthetic apparatus, photophosphorylation provides up to three times higher electron fluxes than aerobic respiration. These results suggest that light-derived energy can provide a substantial fraction of COL2P metabolic needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AAPs:

Aerobic anoxygenic phototrophs

BChl a :

Bacteriochlorophyll a

BPhe a :

Bacteriophaeophytine a

FM :

Maximum fluorescence

FV :

Variable fluorescence

RC:

Reaction centre

Rsb.:

Roseobacter

Rba. :

Rhodobacter

References

  • Béjà O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633

    Article  PubMed  Google Scholar 

  • Biebl H, Wagner-Döbler I (2006) Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: Influence of light regimen and starvation. Process Biochem 41:2153–2159

    Article  CAS  Google Scholar 

  • Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539

    Article  CAS  PubMed  Google Scholar 

  • Bullough PA, Qian P, Hunter CN (2009) Reaction center-light-harvesting core omplex of purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beaty JT (eds) The purple phototrophic bacteria. Springer, Berlin, pp 31–55

    Google Scholar 

  • Clayton RK (1966) Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. Photochem Photobiol 5:669–677

    Article  CAS  Google Scholar 

  • Cottrell MT, Mannino A, Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Env Microbiol 72:557–564

    Article  CAS  Google Scholar 

  • Harashima K, Hayasaki J, Ikari T, Shiba T (1980) O2-stimulated synthesis of bacteriochlorophyll and carotenoids in marine bacteria. Plant Cell Physiol 21:1283–1294

    CAS  Google Scholar 

  • Harashima K, Shiba T, Murata N (eds) (1989) Aerobic photosynthetic bacteria. Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Iba K, Takamiya K (1989) Action spectra for light-inhibition of bacteriochlorophyll and carotenoid accumulation during aerobic growth of photosynthetic bacteria. Plant Cell Physiol 30:471–477

    CAS  Google Scholar 

  • Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, Chen F, Wang P (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099

    Article  CAS  PubMed  Google Scholar 

  • Koblížek M, Béjà O, Bidigare RR, Christensen S, Benetiz-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180:327–338

    Article  PubMed  CAS  Google Scholar 

  • Koblížek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA (2005) Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophyll a fluorescence. Biochim Biophys Acta 1706:220–231

    Article  PubMed  CAS  Google Scholar 

  • Koblížek M, Falkowski PG, Kolber ZS (2006) Diversity and distribution of photosynthetic bacteria in the Black Sea. Deep-Sea Res II 53:1934–1944

    Article  Google Scholar 

  • Koblížek M, Mašín M, Ras J, Poulton AJ, Prášil O (2007) Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Envir Microbiol 9:2401–2406

    Article  CAS  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    Article  CAS  PubMed  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    Article  CAS  PubMed  Google Scholar 

  • Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, Lebaron P (2007) High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Appl Environ Microbiol 73:4198–4205

    Article  CAS  PubMed  Google Scholar 

  • Lami R, Čuperová Z, Ras J, Lebaron P, Koblížek M (2009) Distribution of free-living and particle-attached aerobic anoxygenic phototrophic bacteria in marine environments. Aquat Microbial Ecol. 55:31–38

    Article  Google Scholar 

  • Oz A, Sabehi G, Koblížek M, Massana R, Béjà O (2005) Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol 71:344–353

    Article  CAS  PubMed  Google Scholar 

  • Permentier HP, Schmidt KA, Kobayashi M, Akiyama M, Hager-Braun C, Neerken S, Miller M, Amesz J (2000) Composition and optical properties of reaction centre core complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum. Photosynth Res 64:27–39

    Article  CAS  PubMed  Google Scholar 

  • Salka I, Moulisova V, Koblížek M, Jost G, Jürgens K, Labrenz M (2008) Abundance, depth distribution, and composition of aerobic bacteriochlorophyll a-producing bacteria in four deeps of the central Baltic Sea. Appl Environ Microbiol 74:4398–4404

    Article  CAS  PubMed  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov. and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145

  • Shneour EA (1962) Carotenoid pigment conversion in Rhodopseudomonas spheroides. Biochim Biophys Acta 62:534–540

    Article  CAS  PubMed  Google Scholar 

  • Sieracki ME, Gilg IC, Thier EC, Poulton NJ, Goericke R (2006) Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51:38–46

    Article  Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    Article  PubMed  Google Scholar 

  • Wagner-Döbler I, Biebl H (2006) Environmental Biology of the Marine Roseobacter Lineage. Annu Rev Microbiol 60:255–280

    Article  PubMed  CAS  Google Scholar 

  • Yurkov VV, Csotonyi JT (2009) New light on aerobic anoxygenic phototrophs. In: Hunter CN, Daldal F, Thurnauer MC, Beaty JT (eds) The purple phototrophic bacteria. Springer, Berlin, pp 31–55

    Chapter  Google Scholar 

  • Yurkov VV, van Gemerden H (1993) Impact of light/dark regimen on growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum. Arch Microbiol 159:84–89

    Article  CAS  Google Scholar 

  • Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, Béjà O (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 9:1464–1475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Czech Grant Agency project 206/07/0241, GAAV project IAA608170603 and the Inst. research concepts MSM6007665808 and AV0Z50200510. The authors thank Bc. Martin Marin for his help with the maintenance of the cultures, Dr. Dagmara Sirová for the microscopic analyses and Dr. Vladimíra Moulisová for providing the 16S rRNA sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Koblížek.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koblížek, M., Mlčoušková, J., Kolber, Z. et al. On the photosynthetic properties of marine bacterium COL2P belonging to Roseobacter clade. Arch Microbiol 192, 41–49 (2010). https://doi.org/10.1007/s00203-009-0529-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0529-0

Keywords

Navigation