Skip to main content
Log in

Identification of a novel UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Vibrio fischeri that confers high fosfomycin resistance in Escherichia coli

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

MurA [UDP-N-acetylglucosamine (UDP-NAG) enolpyruvyl transferase] is a key enzyme involved in bacterial cell wall peptidoglycan synthesis and a target for the antimicrobial agent fosfomycin, a structural analog of the MurA substrate phosphoenol pyruvate. In this study, we identified, cloned and sequenced a novel murA gene from an environmental isolate of Vibrio fischeri that is naturally resistant to fosfomycin. The fosfomycin resistance gene was isolated from a genomic DNA library of V. fischeri. An antimicrobial agent hypersensitive strain of Escherichia coli harboring murA from V. fischeri exhibited a high fosfomycin resistance phenotype, with minimum inhibitory concentration of 3,000 μg/ml. The cloned murA gene was 1,269 bp long encoding a 422 amino acid polypeptide with an estimated pI of 5.0. The deduced amino acid sequence of the putative protein was identified as UDP-NAG enolpyruvyl transferase by homology comparison. The MurA protein with an estimated molecular weight of 44.7 kDa was expressed in E. coli and purified by affinity chromatography. MurA of V. fischeri will be a useful target to identify potential inhibitors of fosfomycin resistance in pharmacological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Arca P, Hardisson C, Suarez JE (1990) Purification of a glutathione S-transferase that mediates fosfomycin resistance in bacteria. Antimicrob agents Chemother 34:844–848

    PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingsten RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short Protocols in Molecular Biology, 3rd edn. Wiley, New York

    Google Scholar 

  • Bernan VS, Greenstein M, Maiese WM (1997) Marine microorganisms as a source of new natural products. Adv Appl Microbiol 43:57–90

    Article  PubMed  CAS  Google Scholar 

  • Brown ED, Vivas EI, Walsh CT, Kolter R (1995) MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol 177:4194–4197

    PubMed  CAS  Google Scholar 

  • Bugg TDH, Walsh CT (1992) Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep 9:199–215

    Article  PubMed  CAS  Google Scholar 

  • Cao M, Bernat BA, Wang Z, Armstrong RN, Helmann JD (2001) FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol 183:2380–2383

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Morita Y, Huda MN, Kuroda T, Mizushima T, Tsuchiya T (2002) VmrA, a member of a novel class of Na(+)-coupled multidrug efflux pumps from Vibrio parahaemolyticus. J Bacteriol 184:572–576

    Article  PubMed  CAS  Google Scholar 

  • Clinical and Laboratory Standards Institute (CLSI) (2006) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard, 7th edn, CLSI document M7-A7, vol 26, no. 2. CLSI, Wayne

  • De Smet KA, Kempsell KE, Gallagher A, Duncan K, Young DB (1999) Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145:3177–3184

    PubMed  Google Scholar 

  • Eschenburg S, Priestman M, Schonbruns E (2005) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 280:3757–3763

    Article  PubMed  CAS  Google Scholar 

  • Etienne J, Gerbaud G, Fleurette J, Courvalin P (1991) Characterization of staphylococcal plasmids hybridizing with the fosfomycin resistance gene fosB. FEMS Microbiol Lett 68:119–122

    Article  PubMed  CAS  Google Scholar 

  • Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI (2008) Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 46:1069–1077

    Article  PubMed  Google Scholar 

  • Fillgrove KL, Pakhomova S, Newcomer ME, Armstrong RN (2003) Mechanistic diversity of fosfomycin resistance in pathogenic microorganisms. J Am Chem Soc 125:15730–15731

    Article  PubMed  CAS  Google Scholar 

  • Gottesman S, Halpern E, Trisler P (1981) Role of sulA and sulB in filamentation by Ion mutants of Escherichia coli K-12. J Bacteriol 148:265–273

    PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Kahan FM, Kahan JS, Cassidy PJ, Kropp H (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad Sci 235:364–386

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT (1996) Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35:4923–4928

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz M, Hao L, He S, Hurwitz DI, Jackson JD, Ke Z, Krylov D, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Thanki N, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35:D237–D240

    Article  PubMed  CAS  Google Scholar 

  • Marquardt JL, Siegele DA, Kolter R, Walsh CT (1992) Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 174:5748–5752

    PubMed  CAS  Google Scholar 

  • McCoy AJ, Sandlin RC, Maurelli AT (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185:1218–1228

    Article  PubMed  CAS  Google Scholar 

  • O’Hara K (1993) Two different types of fosfomycin resistance in clinical isolates of Klebsiella pneumoniae. FEMS Microbiol Lett 114:9–16

    Article  PubMed  Google Scholar 

  • Ruby EG, McFall-Ngai MJ (1999) Oxygen-utilizing reactions and symbiotic colonisation of the squid light organ by Vibrio fischeri. Trends Microbiol 7:414–420

    Article  PubMed  CAS  Google Scholar 

  • Teran FJ, Suarez JE, Hardisson C, Mendoza MC (1988) Molecular epidemiology of plasmid mediated resistance to fosfomycin among bacteria isolated from different environments. FEMS Microbiol Lett 55:213–216

    Article  CAS  Google Scholar 

  • Tsuroka T, Yamada Y (1975) Characterization of spontaneous fosfomycin (phosphonomycin)-resistant cells of Escherichia coli B in vitro. J Antibiot 28:906–911

    Google Scholar 

  • Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible in part by National Institutes of Health grants 1 R15 GM070562-01 and P20 RR016480, the latter of which is from the NM-INBRE program of the National Center for Research Resources, a contribution from Calton Research Associates in honor of George and Clytie Calton, and an Internal Research Grant from ENMU. The authors are grateful to Dr. Jeffrey K. Griffith (University of New Mexico) for helpful comments and to Dr. Tomofusa Tsuchiya (Laboratory of Molecular Microbiology, University of Okayama, Japan) for kindly providing E. coli KAM32 used in this study. Ammini Parvathi is grateful to the Director, NIO, Goa and the SIC, NIO (RC), Kochi for their kind help and support. The work at NIO was supported by grant SIP 1302. This is NIO contribution no. 4514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel F. Varela.

Additional information

Communicated by Jorge Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Parvathi, A., Hernandez, R.L. et al. Identification of a novel UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Vibrio fischeri that confers high fosfomycin resistance in Escherichia coli . Arch Microbiol 191, 425–429 (2009). https://doi.org/10.1007/s00203-009-0468-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-009-0468-9

Keywords

Navigation