Skip to main content
Log in

Stability of the pstS transcript of Escherichia coli

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The pst operon of Escherichia coli is composed of five genes that encode a high-affinity phosphate transport system. As a member of the PHO regulon, pst transcription is activated under phosphate shortage conditions. Under phosphate-replete conditions, the pst operon also functions as a negative regulator of the PHO genes. Transcription of pst is initiated at the promoter located upstream to the first gene, pstS. Immediately after its synthesis, the primary transcript of pst is cleaved into shorter mRNA molecules. The transcription unit corresponding to pstS is significantly more abundant than the transcripts of the other pst genes due to stabilisation of pstS mRNA by a repetitive extragenic palindrome (REP) structure downstream to the pstS locus. The presence of the REP sequence also results in an increased level of PstS proteins. However, the surplus level of PstS proteins produced in the presence of REP does not contribute to the repressive role of Pst in PHO expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguena M, Spira B (2003) RT-PCR of long prokaryotic operon transcripts without DNase treatment. J Microbiol Methods 55:419–423

    Article  PubMed  CAS  Google Scholar 

  • Aguena M, Yagil E, Spira B (2002) Transcriptional analysis of the pst operon of Escherichia coli. Mol Genet Genomics 268:518–524

    Article  PubMed  CAS  Google Scholar 

  • Allenby NEE, O’Connor N, Prágai Z, Carter NM, Miethke M, Engelmann S, Hecker M, Wipat A, Ward AC, Harwood CR (2004) Post-transcriptional regulation of the Bacillus subtilis pst operon encoding a phosphate-specific ABC transporter. Microbiology 150:2619–2628

    Article  PubMed  CAS  Google Scholar 

  • Amemura M, Makino K, Shinagawa H, Kobayashi A, Nakata A (1985) Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli. J Mol Biol 184:241–250

    Article  PubMed  CAS  Google Scholar 

  • Bachelier S, Gilson E, Hofnung M, Hill C (1996) Escherichia coli and Salmonella: cellular and molecular biology. In: Neidhardt FC, Curtiss R, Ingraham JL (eds) ASM Press, Washinton DC, pp 2012–2040

  • Bernstein J, Khodursky A, Lin P, Lin-Chao S, Cohen S (2002) Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99:9697–9702

    Article  PubMed  CAS  Google Scholar 

  • Boos W, Lucht J (1996) Escherichia coli and Salmonella: Celular and molecular biology. In: Neidhardt FC, Curtiss R, Ingraham JL (eds) ASM Press, Washinton DC, pp 1175–1209

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chan FY, Torriani A (1996) PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J Bacteriol 178:3974–3977

    PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Ellwood D, Tempest D (1972) Effects of environment on bacterial wall content and composition. Adv Microbiol Physiol 7:83–117

    Article  CAS  Google Scholar 

  • Espéli O, Moulin L, Boccard F (2001) Transcription attenuation associated with bacterial repetitive extragenic BIME elements. J Mol Biol 314:375–386

    Article  PubMed  Google Scholar 

  • Froehlich BJ, Scott JR (1991) A single-copy promoter-cloning vector for use in Escherichia coli. Gene 108:99–101

    Article  PubMed  CAS  Google Scholar 

  • Hardham JM, Stamm LV, Porcella SF, Frye JG, Barnes NY, Howell JK, Mueller SL, Radolf JD, Weinstock GM, Norris SJ (1997) Identification and transcriptional analysis of a Treponema pallidum operon encoding a putative ABC transport system, an iron-activated repressor protein homolog, and a glycolytic pathway enzyme homolog. Gene 197:47–64

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Peltz SW, Jacobson A (1992) Turnover of mRNA in prokaryotes and lower eukaryotes. Curr Opin Genet Dev 2:739–747

    Article  PubMed  CAS  Google Scholar 

  • Hoffer SM, Schoondermark P, van Veen HW, Tommassen J (2001) Activation by gene amplification of pitB, encoding a third phosphate transporter of Escherichia coli K-12. J Bacteriol 183:4659–4663

    Article  PubMed  CAS  Google Scholar 

  • Horazdovsky BF, Hogg RW (1987) High-affinity L-arabinose transport operon. Gene product expression and mRNAs. J Mol Biol 197:27–35

    Article  PubMed  CAS  Google Scholar 

  • Levinthal C, Signer E, Fetherolf K (1962) Reactivation and hybridization of reduced alkaline phosphatase. Proc Natl Acad Sci USA 48:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Magota K, Otsuji N, Miki T, Horiuchi T, Tsunasawa S, Kondo J, Sakiyama F, Amemura M, Morita T, Shinagawa H (1984) Nucleotide sequence of the phoS gene, the structural gene for the phosphate-binding protein of Escherichia coli. J Bacteriol 157:909–917

    PubMed  CAS  Google Scholar 

  • Makino K, Amemura M, Kim SK, Nakata A, Shinagawa H (1993) Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Genes Dev 7:149–160

    Article  PubMed  CAS  Google Scholar 

  • Miller J (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Mohanty BK, Kushner SR (1999) Analysis of the function of Escherichia coli poly(A) polymerase I in RNA metabolism. Mol Microbiol 34:1094–1108

    Article  PubMed  CAS  Google Scholar 

  • Murphy KC, Campellone KG, Poteete AR (2000) PCR-mediated gene replacement in Escherichia coli. Gene 246:321–330

    Article  PubMed  CAS  Google Scholar 

  • Newbury SF, Smith NH, Higgins CF (1987) Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51:1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Selinger DW, Saxena RM, Cheung KJ, Church GM, Rosenow C (2003) Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res 13:216–223

    Article  PubMed  CAS  Google Scholar 

  • Shaw WV (1975) Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43:737–755

    Article  PubMed  CAS  Google Scholar 

  • Spira B, Ferenci T (2008) Alkaline phosphatase as a reporter of sigma(S) levels and rpoS polymorphisms in different E. coli strains. Arch Microbiol 189:43–47

    Article  PubMed  CAS  Google Scholar 

  • Steed PM, Wanner BL (1993) Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 175:6797–6809

    PubMed  CAS  Google Scholar 

  • Taschner NP, Yagil E, Spira B (2006) The effect of IHF on sigmaS selectivity of the phoA and pst promoters of Escherichia coli. Arch Microbiol 185:234–237

    Article  PubMed  CAS  Google Scholar 

  • Wanner, B (1996) Escherichia coli and Salmonella: cellular and molecular biology. In: Neidhardt FC, Curtiss R, Ingraham JL (eds) ASM Press, Washinton DC, pp 1357–1381

  • Webb DC, Rosenberg H, Cox GB (1992) Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J Biol Chem 267:24661–24668

    PubMed  CAS  Google Scholar 

  • Xiao H, Kalman M, Ikehara K, Zemel S, Glaser G, Cashel M (1991) Residual guanosine 3′, 5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP). Meire Aguena and Gerson M. Ferreira were recipients of FAPESP scholarships 02/04070-9 and 02/08604-8, respectively. We thank Ezra Yagil, June Scott and Kenneth Murphy for strains and plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beny Spira.

Additional information

Communicated by Jorge Membrillo-Hernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguena, M., Ferreira, G.M. & Spira, B. Stability of the pstS transcript of Escherichia coli . Arch Microbiol 191, 105–112 (2009). https://doi.org/10.1007/s00203-008-0433-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0433-z

Keywords

Navigation