Skip to main content
Log in

Unusual location and characterization of Cu/Zn-containing superoxide dismutase from filamentous fungus Humicola lutea

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The present study aims to provide new information about the unusual location of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) in lower eukaryotes such as filamentous fungi. Humicola lutea, a high producer of SOD was used as a model system. Subcellular fractions [cytosol, mitochondrial matrix, and intermembrane space (IMS)] were isolated and tested for purity using activity measurements of typical marker enzymes. Evidence, based on electrophoretic mobility, sensitivity to KCN and H2O2 and immunoblot analysis supports the existence of Cu/Zn-SOD in mitochondrial IMS, and the Mn-SOD in the matrix. Enzyme activity is almost equally partitioned between both the compartments, thus suggesting that the intermembrane space could be one of the major sites of exposure to superoxide anion radicals. The mitochondrial Cu/Zn-SOD was purified and compared with the previously published cytosolic enzyme. They have identical molecular mass, cyanide- and H2O2-sensitivity, N-terminal amino acid sequence, glycosylation sites and carbohydrate composition. The H. lutea mitochondrial Cu/Zn-SOD is the first identified naturally glycosylated enzyme, isolated from IMS. These findings suggest that the same Cu/Zn-SOD exists in both the mitochondrial IMS and cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelova M, Dolashka-Angelova P, Ivanova E, Serkedjieva J, Slokoska L, Pashova S, Toshkova R, Vassilev S, Simeonov I, Hartmann H-J, Stoeva S, Weser U, Voelter W (2001) A novel glycosylated Cu/Zn-containing superoxide dismutase: production and potential therapeutic effect. Microbiology 147:1641–1650

    PubMed  CAS  Google Scholar 

  • Baek K, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near isogenic wheat lines. Plant Sci 165:1221–1227

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assay and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bergmeyer HU, Moellering H (1983) Glucose-6-phosphate dehydrogenase. In: Moss DW (ed) Methods of enzymatic analysis, 3rd edn, vol III. Verlag Chemie, Weinheim, pp 191–197

    Google Scholar 

  • Bergmeyer HU, Graßl M, Walter H-E (1983) Hexokinase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn, vol II. Verlag Chemie, Weinheim, pp 222–223

    Google Scholar 

  • Boveris A (1977) Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol 78:67–82

    PubMed  CAS  Google Scholar 

  • Brouwer M, Hoexum-Brouwer T, Grater W, Brown-Peterson N (2003) Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem J 374:219–228

    Article  PubMed  CAS  Google Scholar 

  • Chang E, Kosman D (1990) O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae. J Bacteriol 172:1840–1845

    PubMed  CAS  Google Scholar 

  • Chang L-Y, Slot JW, Geuze HJ, Crapo JD (1988) Molecular immunochemistry of the Cu,Zn superoxide dismutase in rat hepatocytes. J Cell Biol 107:2169–2179

    Article  PubMed  CAS  Google Scholar 

  • Chary P, Hallewell RA, Natvig DO (1990) Structure, exon pattern, and chromosome mapping of the gene for cytosolic copper-zinc superoxide dismutase (sod-1) from Neurospora crassa. J Biol Chem 265:18961–18967

    PubMed  CAS  Google Scholar 

  • Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, Li HM, Jinn TL (2005) A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol 139:425–436

    Article  PubMed  CAS  Google Scholar 

  • Cohen HJ, Fridovich I (1971) Hepatic sulfite oxidase. Purification and properties. J Biol Chem 246:359–366

    PubMed  CAS  Google Scholar 

  • Crapo JD, Oury TD, Rabouille C, Slot JW, Chang L (1992) Copper, zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci USA 89:10405–10409

    Article  PubMed  CAS  Google Scholar 

  • Diez B, Schleissner C, Moreno MA, Rodriguez M, Collados A, Barredo JL (1998) The manganese superoxide dismutase from the penicillin producer Penicillium chrysogenum. Curr Genet 33:387–394

    Article  PubMed  CAS  Google Scholar 

  • Dolashka-Angelova P, Stevanovic S, Dolashki A, Angelova M, Pashova S, Krumova E, Serkejieva J, Zacharieva S, Voelter W (2004) Structural and functional analyses of glycosylated Cu/Zn-SOD from the fungal strain Humicola lutea 103. Biochem Biophys Res Commun 317:1006–1016

    Article  PubMed  CAS  Google Scholar 

  • Edlund A, Edlund T, Hjalmarsson K, Marklund SL, Sandström J, Strömqvist M, Tibell L (1992) A non-glycosilated extracellular superoxide dismutase variant. Biochem J 288:451–456

    PubMed  CAS  Google Scholar 

  • Field LS, Furukawa Y, O’Halloran TV, Culotta VC (2003) Factors controlling the uptake of yeast copper/zinc superoxide dismutase into mitochondria. J Biol Chem 278:28052–28059

    Article  PubMed  CAS  Google Scholar 

  • Francois C, Marshall RD, Neuberger A (1962) Carbohydrates in protein. Biochem J 83:335–341

    PubMed  CAS  Google Scholar 

  • Frealle E, Noel C, Nolard N, Symoens F, Felipe MS, Dei-Cas E, Camus D, Viscogliosi E, Delhaes L (2006) Manganese superoxide dismutase based phylogeny of pathogenic fungi. Mol Phylogenet Evol 41:28–39

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1982) Measuring the activity of superoxide dismutases: an embarrassment of riches. In: Oberly LW (ed) Superoxide dismutase, vol 1. CRC, Boca Baton, pp 69–77

    Google Scholar 

  • Fridovich I (1983) Superoxide radical: an endogenous toxicant. Ann Rev Pharmacol Toxicol 23:239–257

    Article  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Geller BL, Winge DR (1982) Rat liver Cu,Zn-superoxide dismutase. Subcellular location in lysosomes. J Biol Chem 257:8945–8952

    PubMed  CAS  Google Scholar 

  • Halliwell B (1994) Free radicals, anti-oxidants, and human disease: curiosity, cause, or consequence? Lancet 344:721–724

    Article  PubMed  CAS  Google Scholar 

  • Henry LEA, Cammack R, Schwitzguebel JP, Palmert JM, Hall D (1980) Intracellular localization, isolation and characterization of two distinct varieties of superoxide dismutase from Neurospora crassa. Biochem J 187:321–328

    PubMed  CAS  Google Scholar 

  • Hernandez JA, del Rio LA, Sevillaр F (1994) Salt stress-induced changes in superoxide dismutase isozymes in leaves and mesophyll protoplasts from Vigna unguiculata (L.) Walp. New Phytol 126:37–44

    Article  CAS  Google Scholar 

  • Hughes KA, Reynolds RM (2005) Evolutionary and mechanistic theories of aging. Annu Rev Entomol 50:421–445

    Article  PubMed  CAS  Google Scholar 

  • Inarrea P, Moini H, Rettori D, Han D, Martinez J, Garcia I, Fernandez-Vizarra E, Iturralde M, Cadenas E (2005) Redox activation of mitochondrial intermembrane space Cu,Zn-superoxide dismutase. Biochem J 387:203–209

    Article  PubMed  CAS  Google Scholar 

  • Jin ZQ, Zhou HZ, Cecchini G, Gray MO, Karliner JS (2005) MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia–reperfusion injury. Am J Physiol Heart Circ Physiol 288:2986–2994

    Article  CAS  Google Scholar 

  • Keller GA, Warner TG, Steimer KS, Hallewel RA (1991) Cu,Zn superoxide dismutase is a peroxisomal enzyme in human fibroblast and hepatoma cells. Proc Natl Acad Sci USA 88:7381–7385

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (1955) Isocitric dehydrogenase. Meth Enzymol 1:707–708

    Article  CAS  Google Scholar 

  • Krumova E, Dolashka-Angelova P, Pashova S, Stefanova L, Van Beeumen J, Vassilev S, Angelova M (2007) Improved production by fed-batch cultivation and some properties of Cu/Zn-superoxide dismutase from the fungal strain Humicola lutea 103. Enzyme Microb Technol 40:524–532

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Lamarre C, LeMay J-D, Deslauriers N, Bourbonnais Y (2001) Candida albicans express an usual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. J Biol Chem 276:43784–43791

    Article  PubMed  CAS  Google Scholar 

  • Lambowitz AM (1979) Preparation and analysis of mitochondrial ribosomes. Meth Enzymol 59:421–433

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough HJ, Faar AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (haemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Misra HP, Fridovich I (1977) Purification and properties of superoxide dismutase from red alga, Porphyridium cruentum. J Biol Chem 252:6421–6423

    PubMed  CAS  Google Scholar 

  • Nedeva TS, Petrova VY, Zamfirova DR, Stephanova EV, Kujumdzieva AV (2004) Cu/Zn superoxide dismutase in yeast mitochondria—a general phenomenon. FEMS Microbiol Lett 230:19–25

    Article  PubMed  CAS  Google Scholar 

  • Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases in rat liver: Cu/Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    Article  PubMed  CAS  Google Scholar 

  • Sandalio LM, Del Rio LA (1987) Localization of superoxide dismutase in glyoxysomes from Citrullus vulgaris. Functional implications in cellular metabolism. J Plant Physiol 127:395–409

    CAS  Google Scholar 

  • Scandalios JG (1990) Response of plant antioxidant defence genes to environmental stress. Adv Genet 27:1–41

    Google Scholar 

  • Shilova NK, Matyashova RN, Ilchenko AP (1989) The effect of aeration on the activity of alcohol oxidase and enzymes utilising hydrogen peroxide in the course of Candida maltosa growth on paraffin. Microbiologiya (Moskow) 58:430–435

    CAS  Google Scholar 

  • Slekar KH, Kosman D, Culotta VC (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 271:28831–28836

    Article  PubMed  CAS  Google Scholar 

  • Smith AF (1983) Malate dehydrogenase. In: Bergmeyer HU et al (ed) Methods of enzymatic analysis, vol III. Verlag Chemie, Weinheim, pp 163–171

    Google Scholar 

  • Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208

    Article  PubMed  CAS  Google Scholar 

  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089

    PubMed  CAS  Google Scholar 

  • Tibell L, Hjalmarsson K, Edlund T, Skogman G, Engström Е (1987) Expresion of human extracellular supeoxide dismutase in Chinese hamster ovary cells and characterization of the product. Biochemistry 84:6634–6638

    CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon G (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Veeger C, Dervastanian V, Zeylemacer W (1969) Succinate dehydrogenase. Methods Enzymol 13:81–82

    Article  CAS  Google Scholar 

  • Wang ZS, Gu YX, Yuan QS (2006) Effect of nutrition factors on the synthesis of superoxide dismutase, catalase, and membrane lipid peroxide levels in Cordyceps militaris mycelium. Curr Microbiol 52:74–79

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Faraci FM, Heistad DD, Chu Y, Iida Sh, Lund DD, Weiss RM, DiBona GF (2003) Gene transfer of extracellular superoxide dismutase reduces arterial press in spontaneously hypertensive rats: role of heparin-binding domain. Circ Res 92:461–468

    Article  PubMed  CAS  Google Scholar 

  • Weisinger RA, Fridovich I (1973) Superoxide dismutase: organelle specificity. J Biol Chem 248:3582–3592

    Google Scholar 

  • Yamahara T, Shiono T, Sizuki T, Tanaka K, Takiot S, Yamazaki S, Satoh T (1999) Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J Biol Chem 274:33274–33278

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NCSI of the Ministry of Education and Science, Bulgaria (grant K-1302/02), which is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Angelova.

Additional information

Communicated by Geoffrey Turner.

Ekaterina Krumova and Alexander Dolashki equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumova, E., Dolashki, A., Pashova, S. et al. Unusual location and characterization of Cu/Zn-containing superoxide dismutase from filamentous fungus Humicola lutea . Arch Microbiol 189, 121–130 (2008). https://doi.org/10.1007/s00203-007-0300-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0300-3

Keywords

Navigation