Skip to main content
Log in

Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Streptomyces davawensis roseoflavin is synthesized from GTP and ribulose-5-phosphate through riboflavin. As a first step towards the molecular analysis of flavin metabolism in S. davawensis the genes involved in riboflavin biosynthesis were cloned by hybridization of heterologous probes to a genomic library on a high-density colony-array. The genes ribB (riboflavin synthase, α-chain; EC 2.5.1.9), ribM (putative membrane protein), ribA (bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase; EC 3.5.4.25) and ribH (lumazine synthase; EC 2.5.1.9) are organized in an operon-like cluster. Northern blot analysis of this cluster revealed two transcripts of 1.7 and 3.1 kb, respectively. The gene ribB was overexpressed in Escherichia coli. The specific riboflavin synthase activity in a cell-free extract of a recombinant strain was 0.246 nmol mg−1 min−1. Overexpression of ribM enhanced the transport of riboflavin in the corresponding recombinant E. coli strain. Furthermore, overexpression of ribM increased roseoflavin sensitivity of E. coli. On another subgenomic fragment a putative S. davawensis ribG gene coding for the missing pyrimidine deaminase/reductase (EC 3.5.4.26 and EC 1.1.1.193) of the riboflavin biosynthetic pathway and ribY coding for a second (monofunctional) GTP cyclohydrolase II were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bacher A, Baur R, Eggers U, Harders HD, Otto MK, Schnepple H (1980) Riboflavin synthases of Bacillus subtilis. Purification and properties. J Biol Chem 255:632–637

    PubMed  CAS  Google Scholar 

  • Bacher A, Eberhardt S, Richter G (1996) Biosynthesis of riboflavin. In: Neidhardt FC (ed) Escherichia coli and Salmonella typhimurium. ASM Press, Washington, pp 657–664

    Google Scholar 

  • Bacher A, Eberhardt S, Fischer M, Kis K, Richter G (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167

    Article  PubMed  CAS  Google Scholar 

  • Bacher A et al (2001) Biosynthesis of riboflavin. Vitam Horm 61:1–49

    PubMed  CAS  Google Scholar 

  • Bandrin SV, Beburov M, Rabinovich PM, Stepanov AI (1979) [Riboflavin auxotrophs of Escherichia coli]. Genetika 15:2063–2065

    PubMed  CAS  Google Scholar 

  • Bentley SD et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Bereswill S, Hinkelmann S, Kist M, Sander A (1999) Molecular analysis of riboflavin synthesis genes in Bartonella henselae and use of the ribC gene for differentiation of Bartonella species by PCR. J Clin Microbiol 37:3159–3166

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D (2006) The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol 188:2752–2760

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt S, Richter G, Gimbel W, Werner T, Bacher A (1996) Cloning, sequencing, mapping and hyperexpression of the ribC gene coding for riboflavin synthase of Escherichia coli. Eur J Biochem 242:712–719

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt S, Korn S, Lottspeich F, Bacher A (1997) Biosynthesis of riboflavin: an unusual riboflavin synthase of Methanobacterium thermoautotrophicum. J Bacteriol 179:2938–2943

    PubMed  CAS  Google Scholar 

  • Fassbinder F, Kist M, Bereswill S (2000) Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1. FEMS Microbiol Lett 191:191–197

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Bacher A (2005) Biosynthesis of flavocoenzymes. Nat Prod Rep 22:324–350

    Article  PubMed  CAS  Google Scholar 

  • Fuller TE, Mulks MH (1995) Characterization of Actinobacillus pleuropneumoniae riboflavin biosynthesis genes. J Bacteriol 177:7265–7270

    PubMed  CAS  Google Scholar 

  • Gusarov II et al (1997) Riboflavin biosynthetic genes in Bacillus amyloliquefaciens: primary structure, organization and regulation of activity. Mol Biol (Mosk) 31:446–453

    CAS  Google Scholar 

  • Haase I, Mortl S, Kohler P, Bacher A, Fischer M (2003) Biosynthesis of riboflavin in archaea. 6,7-dimethyl-8-ribityllumazine synthase of Methanococcus jannaschii. Eur J Biochem 270:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Hunkapiller MW, Hewick RM, Dreyer WJ, Hood LE (1983) High-sensitivity sequencing with a gas-phase sequenator. Methods Enzymol 91:399–413

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H et al (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Juri N, Kubo Y, Kasai S, Otani S, Kusunose M, Matsui K (1987) Formation of roseoflavin from 8-amino- and 8-methylamino-8-demethyl-d-riboflavin. J Biochem (Tokyo) 101:705–711

    CAS  Google Scholar 

  • Kieser T, Bibb M, Buttner M, Chater K, Hodwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Kreneva RA et al (2000) [Study of the phenotypic occurrence of ura gene inactivation in Bacillus subtilis]. Genetika 36:1166–1168

    PubMed  CAS  Google Scholar 

  • Lee CY, Szittner RB, Meighen EA (1991) The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli. Eur J Biochem 201:161–167

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Szittner RB, Miyamoto CM, Meighen EA (1993) The gene convergent to luxG in Vibrio fischeri codes for a protein related in sequence to RibG and deoxycytidylate deaminase. Biochim Biophys Acta 1143:337–339

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, O’Kane DJ, Meighen EA (1994) Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J Bacteriol 176:2100–2104

    PubMed  CAS  Google Scholar 

  • Matsui K, Juri N, Kubo Y, Kasai S (1979) Formation of roseoflavin from guanine through riboflavin. J Biochem (Tokyo) 86:167–175

    CAS  Google Scholar 

  • Otani S, Takatsu M, Nakano M, Kasai S, Miura R (1974) Letter: Roseoflavin, a new antimicrobial pigment from Streptomyces. J Antibiot (Tokyo) 27:86–87

    CAS  Google Scholar 

  • Perkins J, Pero J (2002) Biosynthesis of riboflavin, biotin, folic acid, and cobalamin. In: Sonenshein A, Hoch J, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, pp 271–286

    Google Scholar 

  • Richter G et al (1993) Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli. J Bacteriol 175:4045–4051

    PubMed  CAS  Google Scholar 

  • Richter G et al (1997) Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J Bacteriol 179:2022–2028

    PubMed  CAS  Google Scholar 

  • Ritz H et al (2001) Biosynthesis of riboflavin: studies on the mechanism of GTP cyclohydrolase II. J Biol Chem 276:22273–22277

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Sauer E, Merdanovic M, Mortimer AP, Bringmann G, Reidl J (2004) PnuC and the utilization of the nicotinamide riboside analog 3-aminopyridine in Haemophilus influenzae. Antimicrob Agents Chemother 48:4532–4541

    Article  PubMed  CAS  Google Scholar 

  • Spoonamore JE, Dahlgran AL, Jacobsen NE, Bandarian V (2006) Evolution of new function in the GTP cyclohydrolase II proteins of Streptomyces coelicolor. Biochemistry 45:12144–12155

    Article  PubMed  CAS  Google Scholar 

  • Strohl WR (1992) Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20:961–974

    Article  PubMed  CAS  Google Scholar 

  • Stüber D, Matile H, Garotta G (1990) System for high-level production in Escherichia coli and rapid purification of recombinant proteins: application to epitope mapping, preparation of antibodies, and structure–function analysis. Immunol Methods 4:121–152

    Google Scholar 

  • Vente A, Korn B, Zehetner G, Poustka A, Lehrach H (1999) Distribution and early development of microarray technology in Europe. Nat Genet 22:22

    Article  PubMed  CAS  Google Scholar 

  • Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS (2002) Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res 30:3141–3151

    Article  PubMed  CAS  Google Scholar 

  • Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Karl-Völker-Foundation and the German Research Foundation (DFG) for financial support and we thank John Clear for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mack.

Additional information

Communicated by Jean-Luc Pernodet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grill, S., Yamaguchi, H., Wagner, H. et al. Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol 188, 377–387 (2007). https://doi.org/10.1007/s00203-007-0258-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0258-1

Keywords

Navigation