Skip to main content
Log in

Characterization of a novel ferredoxin with N-terminal extension from Clostridium acetobutylicum ATCC 824

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A gene (CAC2657) encoding a ferredoxin (EFR1) from the strictly anaerobic soil bacterium Clostridium acetobutylicum was cloned and expressed in Escherichia coli. The ferredoxin gene encodes a polypeptide of 27 kDa that incorporates 2[4Fe–4S] clusters. An extended N-terminal region of 187 amino acid (aa) residues precedes ferredoxin domain. The EFR1 expressed in E. coli is a trimeric protein. The iron and sulfur content of the reconstituted protein agrees with that expected of a trimeric form of the protein. The ferredoxin domain of EFR1 is closely related to ferredoxin of C. pasteurianum; and can be fitted to the X-ray crystal structure with a root mean square deviation of 0.62 As for the Cα atoms of the generated 3D simulation model. In cultures of C. acetobutylicum the efr1 gene shows higher relative expression on induction with Trinitrotoluene (TNT) compared to that from uninduced control cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer ELL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280

    Article  PubMed  CAS  Google Scholar 

  • Beinert H (1983) Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron–sulfur proteins. Anal Biochem 131:373–378

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantitites of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bertini I, Donaire A, Feinberg BA, Luchinat C, Luchinat M, Yuan H (1995) Solution structure of the oxidized 2[4Fe–4S] ferredoxin from Clostridium pasteurianum. Eur J Biochem 232:92–205

    Article  Google Scholar 

  • Carson M (1987) Ribbon models of macromolecules. J Mol Graphics 5:103–106

    Article  CAS  Google Scholar 

  • Cohn CL, Krogmann DW (1985) Multiple ferredoxin from cyanobacteria. Physiol Veg 23:659–667

    CAS  Google Scholar 

  • Cozens AL, Walker JE (1988) Expression of a gene encoding a novel ferredoxin in the cyanobacterium Synechococcus 6301. Biochem J 252:563–569

    PubMed  CAS  Google Scholar 

  • Cozens AL, Walker JE (1987) The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplast. J Mol Biol 194:359–383

    Article  PubMed  CAS  Google Scholar 

  • Elliott JI, Ljungdahl LG (1982) Isolation and characterization of an Fe8–S8 ferredoxin (ferredoxin II) from Clostridium thermoaceticum. J Bacteriol 151:328–333

    PubMed  CAS  Google Scholar 

  • Fujii T, Oozeki M, Moriyama H, Wakagi T, Tanaka N, Oshima T (1997) The crystal structure of zinc-containing ferredoxin from the thermoacidophilic archaeon Sulfolobus sp. strain 7. Biochemistry 36:1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama K, Hase T, Matsumoto S, Tsukihara T, Katsube Y, Tanaka N, Kakudo M, Wada K, Matsubara H (1980) Structure of S. platensis [2Fe–2S] ferredoxin and evolution of chloroplast-type ferredoxins. Nature (London) 286:522

    Article  CAS  Google Scholar 

  • Fukuyama K, Nagahara Y, Tsukihara T, Katsube Y, Hase T, Matsubara H (1988) Tertiary structure of Bacillus thermoproteolyticus [4Fe–4S] ferredoxin. Evolutionary implications for bacterial ferredoxins. J Mol Biol 199:183–193

    Article  PubMed  CAS  Google Scholar 

  • Green EM, Boynton ZL, Harris LM, Rudolph FB, Papoutsakis ET, Bennett GN (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086

    Article  PubMed  CAS  Google Scholar 

  • George DG, Hunt LT, Yeh LS, Barker WC (1985) New perspective on bacterial ferredoxin evolution. J Mol Evol 22:20–31

    Article  PubMed  CAS  Google Scholar 

  • Hedderich R, Albracht SPJ, Linder D, Koch J, Thauer RK (1992) Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum. The mvhB gene product of the methylviologen-reducing hydrogenase operon. FEBS Lett 298:65–68

    Article  PubMed  CAS  Google Scholar 

  • Hong JS, Rabinowitz JC (1970) Molar extinction coefficient and iron and sulfide content of clostridial ferredoxin. J Biol Chem 245:4982–4987

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time PCR quantitative PCR and the 22DDCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Matsubara H, Hase T, Wakabayashi S, Wada K (1980) Structure and evolution of chloroplast- and bacterial-type ferredoxins. In: Sigman DS, Brazier MAB (eds) The evolution of protein structure and function. Academic, New York, pp 245

  • Matsubara H, Hase T, Wakabayashi S, Wada K (1979) Structural and evolution of chloroplast- and bacterial-type ferredoxins. UCLA Forum Med Sci 21:245–266

    PubMed  Google Scholar 

  • Matsubara H, Saeki K (1992) Structural and functional diversity of ferredoxins and related proteins. Adv Inorg Chem 38:223–280

    Article  CAS  Google Scholar 

  • Nölling J, Ishii M, Koch J, Pihl TD, Reeve JN, Thauer RK, Hedderich R (1995) Characterization of a 45 kDa flavoprotein and evidence for a rubredoxin, two proteins that could participate in electron transport from H2 to CO2 in methanogenesis in Methanobacterium thermoautotrophicum. Eur J Biochem 231:628–638

    Article  PubMed  Google Scholar 

  • O’ Keefe DP, Gibson KJ, Emptage MH, Lenstra R, Romesser JA, Litle PJ, Omer CA (1991) Ferredoxins from two sulfonylurea herbicide monooxygenase systems in Streptomyces griseolus. Biochemistry 30:447–455

    Article  Google Scholar 

  • Otaka E, Ooi T (1989) Examination of protein sequence homologies: V. New perspectives on evolution between bacterial and chloroplast-type ferredoxins inferred from sequence evidence. J Mol Evol 29:246–254

    Article  PubMed  CAS  Google Scholar 

  • Otaka E, Ooi T (1987) Examination of protein sequence homologies: IV. Twenty seven bacterial ferredoxin. J Mol Evol 26:257–267

    Article  PubMed  CAS  Google Scholar 

  • Reeve JN, Beckler GS, Cram DS, Hamilton PT, Brown JW, Krzycki JA, Kolodziej AF, Alex L, Orme-Johnson WH, Walsh CT (1989) A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proc Natl Acad Sci USA 86:3031–3035

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Schonheit P, Brandis A, Thauer RK (1979) Ferredoxin degradation in growing Clostridium pasteurianum during periods of iron deprivation. Arch Microbiol 120:73–76

    Article  PubMed  CAS  Google Scholar 

  • Steigerwald VJ, Pihl TD, Reeve JN (1992) Identification and isolation of the polyferredoxin from Methanobacterium thermoautotrophicum strain delta H. Proc Natl Acad Sci USA 89:3031–3035

    Article  Google Scholar 

  • Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  • Thauer RK, Schonheit P (1982) Iron-sulfur complexes of ferredoxin as a strange form of iron in Clostridium pasteurianum. In: Spiro TG (ed) Iron–sulphur proteins, vol 4. Wiley, New York, pp 329–344

  • Vorholt JA, Vaupel M, Thauer RK (1996) A polyferredoxin with eight [4Fe–4S] clusters as a subunit of molybdenum formylmethanofuran dehydrogenase from Methanosarcina barkeri. Eur J Biochem 236:309–317

    Article  PubMed  CAS  Google Scholar 

  • Weiss DS, Thauer RK (1993) Methanogenesis and the unity of biochemistry. Cell 72:819–822

    Article  PubMed  CAS  Google Scholar 

  • Yoch DC, Carithers RP, Arnon DI (1977) Isolation and characterization of bound iron–sulfur proteins from bacterial photosynthetic membranes. J Biol Chem 252:7453–7460

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Army Research Office DOD ARMY W911NF-04-1-0179. We would like to thank Dr. M. S. Cates for assistance with the structure modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George N. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutty, R., Bennett, G.N. Characterization of a novel ferredoxin with N-terminal extension from Clostridium acetobutylicum ATCC 824. Arch Microbiol 187, 161–169 (2007). https://doi.org/10.1007/s00203-006-0184-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0184-7

Keywords

Navigation