Skip to main content

Advertisement

Log in

Differential regulation of Streptococcus mutans gtfBCD genes in response to copper ions

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

To persist in the oral cavity, bacteria must be able to tolerate environmental fluctuation, particularly in pH, nutrients, and essential elements. Glucosyltransferases B, C, and D of Streptococcus mutans synthesize glucans, and play essential roles in the sucrose-dependent adhesion of the organism to tooth surfaces. Transcriptions of gtfB, gtfC, and gtfD could be differentially regulated through independent promoters. To test the hypothesis that environmental factors frequently encountered in the dental plaque might serve as effector molecules involved in regulation, transcripts of individual gtfs were identified by reverse transcriptase-polymerase chain reaction assay and confirmed by Northern blot analysis using anti-sense RNA probes. When S. mutans was grown in different medium at low pH, differential regulation of the gtfs was observed. More specifically, the transcription and translational expression of gtfD but not gtfB and gtfC was specifically induced by copper ion (Cu2+). The up-regulation was independent of the Cu2+-transport operon copYAZ. These findings support the involvement of Cu2+ as an effector molecule in the regulation of S. mutans gtfD. Nutrient change dominates influence of pH but not the effect of Cu2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoki H, Shiroza T, Hayakawa M, Sato S, Kuramitsu HK (1986) Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun 53:587–594

    PubMed  CAS  Google Scholar 

  • Browngardt CM, Wen ZT, Burne RA (2004) RegM is required for optimal fructosyltransferase and glucosyltransferase gene expression in Streptococcus mutans. FEMS Microbiol Lett 240:75–79

    Article  PubMed  CAS  Google Scholar 

  • Chia JS, Hsu TY, Teng LJ, Chen JY, Hahn LJ, Yang CS (1991) Glucosyltransferase gene polymorphism among Streptococcus mutans strains. Infect Immun 59:1656–1660

    PubMed  CAS  Google Scholar 

  • Chia JS, Lin SW, Teng LJ, Hsu TY, Chen JY, Kwan HW, Yang CS (1993) Analysis of a DNA polymorphic region in the gtfB and gtfC genes of Streptococcus mutans. Infect Immun 61:1563–1566

    PubMed  CAS  Google Scholar 

  • Chia JS, Yang CS, Chen JY (1998) Functional analysis of a conserved region in glucosyltransferases of Streptococcus mutans. Infect Immun 66:4797–4803

    PubMed  CAS  Google Scholar 

  • Chia JS, Lee YY, Huang PT, Chen JY (2001) Identification of stress-induced genes in Streptococcus mutans by differential display reverse transcription-PCR. Infect Immun 69:2493–2501

    Article  PubMed  CAS  Google Scholar 

  • Cobine P, Wickramasinghe WA, Harrosin MD, Weber T, Solioz M, Dameron CT (1999) The Enterococcus hirae copper chaperone CopZ delivers copper (I) to the CopY repressor. FEBS Lett 445:27–30

    Article  PubMed  CAS  Google Scholar 

  • Duggal MS, Chawla HS, Curzon MEJ (1991) A study of the relationship between trace elements in saliva and dental caries in children. Arch Oral Biol 36:881–884

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Hoshino T, Ooshima T, Sobue S, Hamada S (2002) Differential and quantitative analyses of mRNA expression of glucosyltransferases from Streptococcus mutans MT8148. J Dent Res 81:109–113

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Motoda R, Ikeda T (1981) Effect of exogenous insoluble glucan primer on insoluble glucan synthesis by Streptococcus mutans. J Dent Res 60:1707–1712

    PubMed  CAS  Google Scholar 

  • Gerhardsson L, Bjőrkner B, Karlsteen M, Schütz A (2002) Copper allergy from dental copper amalgam? Sci Total Environ 290:41–46

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ, van Houte J (1973) On the formation of dental plaques. J Periodontol 6:347–360

    Google Scholar 

  • Goodman SD, Gao Q (2000) Characterization of the gtfB and gtfC promoters from Streptococcus mutans GS-5. Plasmid 43:85–98

    Article  PubMed  CAS  Google Scholar 

  • Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384

    PubMed  CAS  Google Scholar 

  • Hanada N, Kuramitsu HK (1988) Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun 56:1999–2005

    PubMed  CAS  Google Scholar 

  • Hanada N, Kuramitsu HK (1989) Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun 57:2079–2085

    PubMed  CAS  Google Scholar 

  • Li Y, Burne RA (2001) Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbonhydrate. Microbiology 147:2841–2848

    PubMed  CAS  Google Scholar 

  • Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380

    PubMed  CAS  Google Scholar 

  • Lu ZH, Solioz M (2001) Copper-induced proteolysis of the copZ copper chaperone of Enterococcus hirae. J Biol Chem 276:47822–47827

    PubMed  CAS  Google Scholar 

  • Mitrakul K, Loo CY, Hughes CV, Ganeshkumar N (2004) Role of a Streptococcus gordonii copper-transport operon, copYAZ, in biofilm detachment. Oral Microbiol Immunol 19:395–402

    Article  PubMed  CAS  Google Scholar 

  • Morrier JJ, Suchett-Kaye G, Nguyen D, Rocca JP, Blanc-Benon J, Barsotti O (1998) Antimicrobial activity of amalgams, alloys and their elements and phases. Dent Mater 14:150–157

    Article  PubMed  CAS  Google Scholar 

  • Shiroza T, Kuramitsu HK (1993) Construction of a model secretion system for oral streptococci. Infect Immun 61:3745–3755

    PubMed  CAS  Google Scholar 

  • Smorawinska M, Kuramitsu HK (1995) Primer extension analysis of Streptococcus mutans promoter structures. Oral Microbiol Immunol 10:188–192

    Article  PubMed  CAS  Google Scholar 

  • Solioz M, Vulpe C (1996) CPx-type ATPases. A class of P-type ATPases that pump heavy metals. Trends Biochem Sci 21:237–241

    Article  PubMed  CAS  Google Scholar 

  • Solioz M, Stoyanov JV (2003) Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev 27:183–195

    Article  PubMed  CAS  Google Scholar 

  • Tsumori H, Minami T, Kuramitsu HK (1997) Identification of essential amino acids in the Streptococcus mutans glucosyltransferases. J Bacteriol 179:3391–3396

    PubMed  CAS  Google Scholar 

  • Vats N, Lee SF (2001) Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiology 147:653–662

    PubMed  CAS  Google Scholar 

  • Wallam C, Afseth J, Emilson CG (1992) Copper in approximal plaque form conventional and non-gamma-2 amalgam restorations. Acta Odontologica Scandivica 50:79–82

    Article  Google Scholar 

  • Wataha JC, Lockwood PE (1998) Release of elements from dental casting alloys into cell-culture medium over 10 months. Dent Mater 14:158–163

    Article  PubMed  CAS  Google Scholar 

  • Wexler DL, Hudson MC, Burne RA (1993) Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infect Immun 61:1259–1267

    PubMed  CAS  Google Scholar 

  • Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK (1993) Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61:3811–3817

    PubMed  CAS  Google Scholar 

  • Yoshida A, Kuramitsu HK (2002) Streptococcus mutans biofilm formation: utilization of a gtfB promoter-green fluorescent protein (PgtfB::gfp) construct to monitor development. Microbiology 148:3385–3394

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Howard K. Kuramitsu for plasmid pYNB13, pNH3, and pNH5 and Song F. Lee for strain JH1005 and S4. This work was supported in part by the National Science Council (grant NSC-902320-B002-134, NSC-942320-B002-007) and National Health Research Institute (grant NHRI- EX91-9139SI, NHRI-EX94-9432SI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-San Chia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PM., Chen, JY. & Chia, JS. Differential regulation of Streptococcus mutans gtfBCD genes in response to copper ions. Arch Microbiol 185, 127–135 (2006). https://doi.org/10.1007/s00203-005-0076-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0076-2

Keywords

Navigation