Skip to main content
Log in

Novel method for the quantification of inorganic polyphosphate (iPoP) in Saccharomyces cerevisiae shows dependence of iPoP content on the growth phase

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Inorganic polyphosphate (iPoP)—linear chains of up to hundreds of phosphate residues—is ubiquitous in nature and appears to be involved in many different cellular processes. In Saccharomyces cerevisiae, iPoP has been detected in high concentrations, especially after transfer of phosphate-deprived cells to a high-phosphate medium. Here, the dynamics of iPoP synthesis in yeast as a function of the growth phase as well as glucose and phosphate availability have been investigated. To address this question, a simple, fast and novel method for the quantification of iPoP from yeast was developed. Both the iPoP content during growth and the iPoP “overplus” were highest towards the end of the exponential phase, when glucose became limiting. Accumulation of iPoP during growth required excess of free phosphate, while the iPoP “overplus” was only observed after the shift from low- to high-phosphate medium. The newly developed iPoP quantification method and the knowledge about the dynamics of iPoP content during growth made it possible to define specific growth conditions for the analysis of iPoP levels. These experimental procedures will be essential for the large-scale analysis of various mutant strains or the comparison of different growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ault-RichĂ© D, Kornberg A (1999) Definitive enzymatic assays in polyphosphate analysis. In: Schröder HC, MĂĽller WEG (eds) Inorganic polyphosphates: biochemistry, biology, biotechnology. Springer, Berlin Heidelberg New York, pp 241–252

    Google Scholar 

  • Beever RE, Burns DJW (1980) Phosphorus uptake, storage and utilization by fungi. In: Woolhouse HW (ed) Advances in botanical research. Academic Press, Norwich, pp 127–219

    Google Scholar 

  • Brachmann CB, et al (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  PubMed  CAS  Google Scholar 

  • Cogan EB, Birrell GB, Griffith OH (1999) A robotics-based automated assay for inorganic and organic phosphates. Anal Biochem 271:29–35

    Article  PubMed  CAS  Google Scholar 

  • Crooke E, Akiyama M, Rao NN, Kornberg A (1994) Genetically altered levels of inorganic polyphosphate in Escherichia coli. J Biol Chem 269:6290–6295

    PubMed  CAS  Google Scholar 

  • Datema R, Vandenende H, Wessels JGH (1977) Hyphal wall of Mucor mucedo 1 Polyanionic polymers. Eur J Biochem 80:611–619

    Article  PubMed  CAS  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg M (1961) Phosphorus metabolism by Saccharomyces cerevisiae in relation to intracellular and extracellular phosphate concentration. Arch Mikrobiol 40:126–152

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Garcia MR, Kornberg A (2004) Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc Natl Acad Sci USA 101:15876–15880

    Article  PubMed  CAS  Google Scholar 

  • Harold FM (1966) Inorganic polyphosphates in biology—structure metabolism and function. Bacteriol Rev 30:772–794

    PubMed  CAS  Google Scholar 

  • Indge KJ (1968) Polyphosphates of the yeast cell vacuole. J Gen Microbiol 51:447–455

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Tohe A, Oshima Y (1982) Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae. Mol Cell Biol 2:127–137

    PubMed  CAS  Google Scholar 

  • Katchman BJ, Fetty WO (1955) Phosphorus metabolism in growing cultures of Saccharomyces cerevisiae. J Bacteriol 69:607–615

    PubMed  CAS  Google Scholar 

  • Kim KS, Rao NN, Fraley CD, Kornberg A (2002) Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci USA 99:7675–7680

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A, Rao NN, Ault-RichĂ© D (1999) Inorganic polyphosphate: a molecule of many functions. Ann Rev Biochem 68:89–125

    Article  PubMed  CAS  Google Scholar 

  • Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Ann Rev Microbiol 54:709–734

    Article  CAS  Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (1999) New aspects of inorganic polyphosphate metabolism and function. J Biosci Bioeng 88:111–129

    Article  PubMed  CAS  Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Kulakovskaya TV, Andreeva NA, Trilisenko LV, Vagabov VM, Kulaev IS (2003) Two exopolyphosphatases in Saccharomyces cerevisiae cytosol at different culture conditions. Proc Biochem 39:1625–1630

    Article  CAS  Google Scholar 

  • Kuroda A, et al (2001) Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E coli. Science 293:705–708

    Article  PubMed  CAS  Google Scholar 

  • Langen P, Liss E (1958) Formation and conversion of yeast polyphosphates. Biochem Z 330:455–466

    PubMed  CAS  Google Scholar 

  • Liss E, Langen P (1962) Versuche zur polyphosphat-ĂĽberkompensation in hefezellen nach phosphatverarmung. Arch Microbiol 41:383–392

    CAS  Google Scholar 

  • Martinez P, Zvyagilskaya R, Allard P, Persson BL (1998) Physiological regulation of the derepressible phosphate transporter in Saccharomyces cerevisiae. J Bacteriol 180:2253–2256

    PubMed  CAS  Google Scholar 

  • Melcher K (2000) A modular set of prokaryotic and eukaryotic expression vectors. Anal Biochem 277:109–120

    Article  PubMed  CAS  Google Scholar 

  • Ogawa N, Tzeng CM, Fraley CD, Kornberg A (2000) Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. J Bacteriol 182:6687–6693

    Article  PubMed  CAS  Google Scholar 

  • Pick U, Weiss M (1991) Polyphosphate hydrolysis within acidic vacuoles in response to amine-induced alkaline stress in the halotolerant alga Dunaliella salina. Plant Physiol 97:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • QIAGEN (2003) The QIAexpressionist a handbook for high-level expression and purification of 6xHis-tagged proteins, 5th edn Qiagen, Germany

  • Rashid MH, et al (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641

    Article  PubMed  CAS  Google Scholar 

  • Schmidt G, Hecht L, Thannhauser SJ (1946) The enzymatic formation and the accumulation of large amounts of a metaphosphate in baker’s yeast under certain conditions. J Biol Chem 166:775–776

    CAS  Google Scholar 

  • Schuddemat J, de Boo R, van Leeuwen CC, van den Broek PJ, van Steveninck J (1989) Polyphosphate synthesis in yeast. Biochim Biophys Acta 1010:191–198

    Article  PubMed  CAS  Google Scholar 

  • Solimene R, Guerrini AM, Donini P (1980) Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae. J Bacteriol 143:710–714

    PubMed  CAS  Google Scholar 

  • Stahl G, Salem SN, Chen L, Zhao B, Farabaugh PJ (2004) Translational accuracy during exponential, postdiauxic, and stationary growth phases in Saccharomyces cerevisiae. Eukaryot Cell 3:331–338

    Article  PubMed  CAS  Google Scholar 

  • Vagabov VM, Trilisenko LV, Shchipanova IN, Sibeldina LA, Kulaev IS (1998) Changes in inorganic polyphosphate length during the growth of Saccharomyces cerevisiae. Microbiologia 67:153–157

    CAS  Google Scholar 

  • Vagabov VM, Trilisenko LV, Kulaev IS (2000) Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Biochem (Mosc) 65:349–354

    CAS  Google Scholar 

  • Wang L, Fraley CD, Faridi J, Kornberg A, Roth RA (2003) Inorganic polyphosphate stimulates mammalian TOR, a kinase involved in the proliferation of mammary cancer cells. Proc Natl Acad Sci USA 100:11249–11254

    Article  PubMed  CAS  Google Scholar 

  • Wiame JM (1947) Étude d’ une substance polyphosphorĂ©e, basophile et mĂ©tachromatique chez les levures. Biochim Biophys Acta 1:234–255

    Article  CAS  Google Scholar 

  • Wurst H, Kornberg A (1994) A soluble exopolyphosphatase of Saccharomyces cerevisiae—purification and characterization. J Biol Chem 269:10996–11001

    PubMed  CAS  Google Scholar 

  • Wurst H, Shiba T, Kornberg A (1995) The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol 177:898–906

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. C. A. Jakob for introducing us to experimental work with S. cerevisiae and for valuable discussions, and Dr. U. Merz for providing the Elisa Reader. This work was supported by the ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian M. Freimoser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, T.P., Amrhein, N. & Freimoser, F.M. Novel method for the quantification of inorganic polyphosphate (iPoP) in Saccharomyces cerevisiae shows dependence of iPoP content on the growth phase. Arch Microbiol 184, 129–136 (2005). https://doi.org/10.1007/s00203-005-0031-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0031-2

Keywords

Navigation