Skip to main content

Advertisement

Log in

Genetic PI based model and path tracking control of four traction electrical vehicle

Electrical Engineering Aims and scope Submit manuscript

Abstract

Modeling and control of four-wheel electric vehicles are difficult due to their dynamic parameters and variable road conditions. In this paper, a robust and adaptive electric vehicle model and position control that can be adapted to state variables using a dynamic lateral and longitudinal model of a four-wheel electric vehicle have been proposed. The longitudinal and lateral forces have been modeled according to Newton’s second law, depending on the parameters such as the vehicle’s size, width, height, weight and slope angle by using dynamic equations of the vehicle. In this paper, a permanent magnet synchronous hub motor has been used for each wheel of the electric vehicle. The magic formula wheel model has been used to determine the relationship between the slip and the friction of the designed vehicle. Using the slip system, the relationship between the speed of the electric vehicle itself and the wheel speeds have been defined. The proportional controller at the position loop and proportional + integral controller at the speed loop of the designed system have been used. In the path tracking control system, position controls have been made in the X and Y coordinate planes. A P position controller and a PI speed controller have been used for each plane. Thus, there are 6 controller coefficients in total. Because of the complicated structure of the system, it is difficult to determine the most suitable controller coefficients by analytical methods. Therefore, the genetic algorithm which is one of the heuristic algorithms has been used in determining these coefficients. Simulation studies have been conducted with a different path and position references to see the effectiveness of the proposed electric vehicle model and position control. The obtained results show that the proposed model and control system are robust, effective and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Emadi A, Ehsani M, Miller JM (2003) Vehicular electric power systems: land, sea, air, and space vehicles. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Emadi A, Williamson SS, Khaligh A (2006) Power electronics intensive solutions for advanced electric, hybrid electric and fuel cell vehicular power systems. IEEE Trans Power Electron 21(3):567–577. https://doi.org/10.1109/TPEL.2006.872378

    Article  Google Scholar 

  3. Yang H, Cocquempot V, Jiang B (2010) Optimal fault-tolerant path-tracking control for 4WS4WD electric vehicles. IEEE Trans Intell Transp Syst 11(1):237–243. https://doi.org/10.1109/TITS.2009.2033374

    Article  Google Scholar 

  4. Sun X, Hu C, Lei G, Guo Y, Zhu J (2020) State feedback control for a PM hub motor based on gray wolf optimization algorithm. IEEE Trans Power Electron 35(1):1136–1146. https://doi.org/10.1109/TPEL.2019.2923726

    Article  Google Scholar 

  5. Shi Z, Sun X, Lei G, Yang Z, Guo Y, Zhu J (2020) Analysis and optimization of radial force of permanent-magnet synchronous hub motors. IEEE Trans Magn 56(2):1–4. https://doi.org/10.1109/TMAG.2019.2953731

    Article  Google Scholar 

  6. Lu D, Li J, Ouyang M, Gu J (2011) Research on hub motor control of four-wheel drive electric vehicle. In: IEEE vehicle power and propulsion conference. pp 1–5. https://doi.org/10.1109/VPPC.2011.6043150

  7. Yu H, Huang M (2011) Speed regulation control combining feedforward with feedback of hub motor for motor-wheel driving electric vehicle. In: International conference on electrical and control engineering. pp 4976–4979. https://doi.org/10.1109/ICECENG.2011.6057266

  8. Hori Y, Toyoda Y, Tsuruoka Y (1998) Traction control of electric vehicle: basic experimental results using the test EV” UOT electric march”. IEEE Trans Ind Appl 34(5):1131–1138. https://doi.org/10.1109/28.720454

    Article  Google Scholar 

  9. Sakai SI, Sado H, Hori Y (1999) Motion control in an electric vehicle with four independently driven in-wheel motors. IEEE/ASME Trans Mechatron 4(1):9–16. https://doi.org/10.1109/3516.752079

    Article  Google Scholar 

  10. Pusca R, Ait-Amirat Y, Berthon A, Kauffmann JM (2002) Modeling and simulation of a traction control algorithm for an electric vehicle with four separate wheel drives. In: Vehicular technology conference proceedings. vol 3, pp 1671–1675. https://doi.org/10.1109/VETECF.2002.1040500

  11. Yin D, Oh S, Hori Y (2009) A novel traction control for EV based on maximum transmissible torque estimation. IEEE Trans Ind Electron 56(6):2086–2094. https://doi.org/10.1109/TIE.2009.2016507

    Article  Google Scholar 

  12. Yin D, Hori Y (2009) A novel traction control without chassis velocity for electric vehicles. World Electr Veh J 3(2):282–288. https://doi.org/10.3390/wevj3020282

    Article  Google Scholar 

  13. Drakunov S, Ozguner U, Dix P, Ashrafi B (1995) ABS control using optimum search via sliding modes. IEEE Trans Control Syst Technol 3(1):79–85. https://doi.org/10.1109/87.370698

    Article  Google Scholar 

  14. Khatun P, Bingham CM, Mellor PH (2001) Comparison of control methods for electric vehicle antilock braking/traction control systems. SAE Tech Pap 2:1–12. https://doi.org/10.4271/2001-01-0596

    Article  Google Scholar 

  15. Oudghiri M, Chadli M, El HA (2007) Robust fuzzy sliding mode control for antilock braking system. Int J Sci Tech Autom Control 1(1):13–28

    Google Scholar 

  16. Hahn JO, Rajamani R, Alexander L (2002) GPS-based real-time identification of tire-road friction coefficient. IEEE Trans Control Syst Technol 10(3):331–343. https://doi.org/10.1109/87.998016

    Article  Google Scholar 

  17. Chen Y, Wang J (2011) Adaptive vehicle speed control with input injections for longitudinal motion independent road frictional condition estimation. IEEE Trans Veh Technol 60(3):839–848. https://doi.org/10.1109/TVT.2011.2106811

    Article  Google Scholar 

  18. Alipour H, Sabahi M, Sharifian MBB (2015) Lateral stabilization of a four wheel independent drive electric vehicle on slippery roads. Mechatronics 30:275–285. https://doi.org/10.1016/j.mechatronics.2014.08.006

    Article  Google Scholar 

  19. Peng ST (2007) On one approach to constraining the combined wheel slip in the autonomous control of a 4WS4WD vehicle. IEEE Trans Control Syst Technol 15(1):168–175. https://doi.org/10.1109/TCST.2006.883229

    Article  MathSciNet  Google Scholar 

  20. Hu JS, Yin D, Hori Y (2011) Fault-tolerant traction control of electric vehicles. Control Eng Pract 19(2):204–213. https://doi.org/10.1016/j.conengprac.2010.11.012

    Article  Google Scholar 

  21. Wang R, Wang J (2011) Fault-tolerant control with active fault diagnosis for four-wheel independently driven electric ground vehicles. IEEE Trans Veh Technol 60(9):4276–4287. https://doi.org/10.1109/TVT.2011.2172822

    Article  Google Scholar 

  22. Ye D, Yang GH (2006) Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Trans Control Syst Technol 14(6):1088–1096. https://doi.org/10.1109/TCST.2006.883191

    Article  Google Scholar 

  23. Perez PFJ, Cervantes I, Emadi A (2009) Stability of an electric differential for traction applications. IEEE Trans Veh Technol 58(7):3224–3233. https://doi.org/10.1109/TVT.2009.2013473

    Article  Google Scholar 

  24. Haddoun A, Benbouzid MEH, Diallo D, Abdessemed R, Ghouili J, Srairi K (2008) Modeling, analysis, and neural network control of an EV electrical differential. IEEE Trans Ind Electron 55(6):2286–2294. https://doi.org/10.1109/TIE.2008.918392

    Article  Google Scholar 

  25. Hartani K, Bourahla M, Miloud Y, Sekour M (2009) Electronic differential with direct torque fuzzy control for vehicle propulsion system. Turk J Electr Eng Comput Sci 17(1):21–38. https://doi.org/10.3906/elk-0801-1

    Article  Google Scholar 

  26. Li DY, Song YD, Huang D, Chen HN (2013) Model-independent adaptive fault-tolerant output tracking control of 4WS4WD road vehicles. IEEE Trans Intell Transp Syst 14(1):169–179. https://doi.org/10.1109/TITS.2012.2211016

    Article  Google Scholar 

  27. Hiraoka T, Nishihara O, Kumamoto H (2009) Automatic path-tracking controller of a four-wheel steering vehicle. Veh Syst Dyn 47(10):1205–1227. https://doi.org/10.1080/00423110802545919

    Article  Google Scholar 

  28. Raffo GV, Gomes GK, Normey RJE, Kelber CR, Becker LB (2009) A predictive controller for autonomous vehicle path tracking. IEEE Trans Intell Transp Syst 10(1):92–102. https://doi.org/10.1109/TITS.2008.2011697

    Article  Google Scholar 

  29. Tanaka Y, Murakami T (2009) A study on straight-line tracking and posture control in electric bicycle. IEEE Trans Ind Electron 56(1):159–168. https://doi.org/10.1109/TIE.2008.927406

    Article  Google Scholar 

  30. Lee S, Ham W (2002) Self stabilizing strategy in tracking control of unmanned electric bicycle with mass balance. In: IEEE/RSJ ınternational conference on ıntelligent robots and systems. vol 3, pp 2200–2205. https://doi.org/10.1109/IRDS.2002.1041594

  31. Potluri R, Singh AK (2012) Path-tracking control of an autonomous 4WS4WD electric vehicle using driving motors’ dynamics. In: IEEE 7th ınternational conference on ındustrial and ınformation systems. pp 1–6. https://doi.org/10.1109/iciinfs.2012.6304812

  32. Wang D, Qi F (2001) Trajectory planning for a four-wheel-steering vehicle proceedings 2001 ICRA. In: IEEE ınternational conference on robotics and automation. vol 4, pp 3320–3325. https://doi.org/10.1109/ROBOT.2001.933130

  33. Potluri R, Singh AK (2015) Path-tracking control of an autonomous 4WS4WD electric vehicle using its natural feedback loops. IEEE Trans Control Syst Technol 23(5):2053–2062. https://doi.org/10.1109/TCST.2015.2395994

    Article  Google Scholar 

  34. Song YD, Chen HN, Li DY (2011) Virtual-point-based fault-tolerant lateral and longitudinal control of 4W-steering vehicles. IEEE Trans Intell Transp Syst 12(4):1343–1351. https://doi.org/10.1109/TITS.2011.2158646

    Article  MathSciNet  Google Scholar 

  35. Omae M, Fujioka T (2001) Experimental study on application of DGPS-based position information to automatic driving control. J Robot Mechatron 13(4):340–351

    Article  Google Scholar 

  36. Christian GJ, Rossetter EJ, Saur U (2001) Combining lanekeeping and vehicle following with hazard maps. Veh Syst Dyn 36(5):391–411. https://doi.org/10.1076/vesd.36.4.391.3548

    Article  Google Scholar 

  37. Moriwaki K (2005) Autonomous steering control for electric vehicles using nonlinear state feedback H∞ control. Nonlinear Anal Theory Methods Appl 63(5):2257–2268. https://doi.org/10.1016/j.na.2005.03.065

    Article  MATH  Google Scholar 

  38. Sanyal A, Nordkvist N, Chyba M (2011) An almost global tracking control scheme for maneuverable autonomous vehicles and its discretization. IEEE Trans Autom Control 56(2):457–462. https://doi.org/10.1109/TAC.2010.2090190

    Article  MathSciNet  MATH  Google Scholar 

  39. Ustun O (2016) A tracking position control of the switched reluctance motor with genetic based conventional controllers. SDU Int J Technol 8(1):66–75

    Google Scholar 

  40. Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications. IEEE Trans Ind Electron 43(5):519–534. https://doi.org/10.1109/41.538609

    Article  Google Scholar 

  41. Elmas C, Ustun O (2008) A hybrid controller for the speed control of a permanent magnet synchronous motor drive. Control Eng Pract 16(3):260–270. https://doi.org/10.1016/j.conengprac.2007.04.016

    Article  Google Scholar 

  42. Ustun O, Bekiroğlu E, Önder M (2020) Design of highly effective multilayer feedforward neural network by using genetic algorithm. Expert Syst. https://doi.org/10.1111/exsy.12532

    Article  Google Scholar 

  43. Şimşir M, Bayır R, Uyaroğlu Y (2016) Real-Time monitoring and fault diagnosis of a low power hub motor using feedforward neural network. Comput Intell Neurosci. https://doi.org/10.1155/2016/7129376

    Article  Google Scholar 

  44. Lyshevski SE (1997) Nonlinear robust control of permanent-magnet synchronous motors: tracking and disturbance rejection. In: Proceedings of the 1997 IEEE ınternational conference on control applications. pp 115–120. https://doi.org/10.1109/cca.1997.627491

  45. Pacejka HB, Bakker E (1992) The magic formula tyre model. Veh Syst Dyn 21(1):1–18. https://doi.org/10.1080/00423119208969994

    Article  Google Scholar 

  46. Rajamani R, Phanomchoeng G, Piyabongkarn D, Lew JY (2012) Algorithms for real-time estimation of individual wheel tire-road friction coefficients. IEEE/ASME Trans Mechatron 17(6):1183–1195. https://doi.org/10.1109/TMECH.2011.2159240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Guvenc.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, M.U., Guvenc, U. & Elmas, C. Genetic PI based model and path tracking control of four traction electrical vehicle. Electr Eng 102, 2059–2073 (2020). https://doi.org/10.1007/s00202-020-01015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01015-5

Navigation