Skip to main content
Log in

Application of fuzzy logic in sensorless induction motor drive with PWM-DTC

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The paper deals with the application of fuzzy logic in the current-based model reference adaptive system (CB-MRAS) for sensorless induction motor drives using direct torque control with pulse-width modulation. The stability analysis of the selected observer is described in the first part. Fuzzy logic is used to adjust the parameters of proportional–integral (PI) adaption algorithm of the CB-MRAS observer. The description of a laboratory workplace with an induction motor drive and load system is presented in the third part. Comparisons of conventional PI and fuzzy logic-based adaptation algorithms are shown in the paper. The theoretical assumptions of the sensorless induction motor drive are confirmed by the simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lascu Ch, Boldea I, Blaabjerg F (2006) Comparative study of adaptive and inherently sensorless observers for variable-speed induction-motor drives. IEEE Trans Ind Electron 53(1):57–65

    Article  Google Scholar 

  2. Arab Markadeh GR, Soltani J (2006) Robust direct torque and flux control of adjustable speed sensorless induction machine drive based on space vector modulation using a PI predictive controller. Electr Eng 88(6):485–496

    Article  Google Scholar 

  3. Iacchetti MF, Carmeli MS, Dezza FC, Perini R (2010) A speed sensorless control based on a MRAS applied to a double fed induction machine drive. Electr Eng 91(6):337–345

    Article  Google Scholar 

  4. Orlowska-Kowalska T, Dybkowski M (2010) Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive. IEEE Trans Ind Electron 57(4):1296–1308

    Article  Google Scholar 

  5. Chandrakala KRMV, Balamurugan S, Sankaranarayanan K (2012) Genetic algorithm tuned optimal variable structure system controller for enhanced load frequency control. Int Rev Electr Eng I 7(2):4105–4112

    Google Scholar 

  6. Stojic DM (2012) An algorithm for induction motor stator flux estimation. Adv Electr Comput Eng 12(3):47–52

    Article  Google Scholar 

  7. Girovsky P, Timko J, Zilkova J (2012) Shaft sensor-less FOC control of an induction motor using neural estimators. Acta Polytech Hung 9(4):31–45

    Google Scholar 

  8. Maiti S, Verma V, Chakraborty C, Hori Y (2012) An adaptive speed sensorless induction motor drive with artificial neural network for stability enhancement. IEEE Trans Ind Inform 8(4):757–766

    Article  Google Scholar 

  9. Palacky P, Hudecek P, Havel A (2013) Real-time estimation of induction motor parameters based on the genetic algorithm. In: Proceedings of the international joint conference CISIS’12–ICEUTE’12–SOCO’12 special sessions, pp 401–409

  10. Derdiyok A, Basci A (2016) Speed estimation of an induction machine based on designed Lyapunov candidate functions. Electr Eng 98(1):67–75

    Article  Google Scholar 

  11. Tamai S, Sugimoto H, Masao Y (1987) Speed sensorless vector control of IM with model reference adaptive system. In: Conference record IEEE/IAS annual meeting, pp 189–195

  12. Schauder C (1992) Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Trans Ind Electron 28(5):1054–1061

    Google Scholar 

  13. Auger F, Hilairet M, Guerrero JM, Monmasson E, Orlowska-Kowalska T, Katsura S (2013) Industrial applications of the Kalman filter: a review. IEEE Trans Ind Electron 60(12):5458–5471

    Article  Google Scholar 

  14. Bose BK (2002) Modern power electronics and AC drives. Prentice Hall, Upper Saddle River

    Google Scholar 

  15. Brandstetter P, Dobrovsky M (2013) Speed estimation of induction motor using model reference adaptive system with Kalman filter. Adv Elect Electr Eng 12(1):22–28

    Google Scholar 

  16. Brandstetter P, Dobrovsky M, Petrtyl O, Dong CST, Vo HH (2016) Sensorless control of induction motor drive using BEMF-MRAS with Kalman filter. In: Proceedings of the 11th international conference ELEKTRO 2016, pp 121–126

  17. Brandstetter P, Dobrovsky M, Kuchar M, Dong CST, Vo HH (2017) Application of BEMF-MRAS with Kalman filter in sensorless control of induction motor drive. Electr Eng 99(4):1151–1160

    Article  Google Scholar 

  18. Luenberger DG (1971) An introduction to observers. IEEE Trans Automat Contr 16(6):596–602

    Article  MathSciNet  Google Scholar 

  19. Kubota H, Matsuse K, Nakano T (1990) New adaptive flux observer for wide speed range motor drives. In: Proceedings of IEEE-IECON, pp 921–926

  20. Kubota H, Matsuse K, Nakano T (1993) DSP-based speed adaptive flux observer of induction motor. IEEE Trans Ind Appl 29(2):344–348

    Article  Google Scholar 

  21. Brandstetter P, Friedrich J (2012) Speed estimation of induction motor using Luenberger observer. Acta Technica CSAV 57:113–126

    Google Scholar 

  22. Gacho J, Zalman M (2010) IM based speed servodrive with Luenberger observer. J Electr Eng 61(3):149–156

    Google Scholar 

  23. Sutnar Z, Rodi M, Peroutka Z (2008) Sliding mode flux observer of induction motor. Adv Elect Electr Eng 7(1–2):195–197

    Google Scholar 

  24. Dong CST, Brandstetter P, Vo HH, Tran TC, Vo DH (2016) Adaptive sliding mode controller for induction motor. In: Proceedings of the 3rd international conference AETA 2016, pp 543–553

  25. Nayeem Hasan SM, Husain Iqbal (2009) A Luenberger–sliding mode observer for online parameter estimation and adaptation in high-performance induction motor drives. IEEE Trans Ind Appl 45(2):772–781

    Article  Google Scholar 

  26. Brandstetter P (2012) Sensorless control of induction motor using modified MRAS. Int Rev Electr Eng I 7(3):4404–4411

    Google Scholar 

  27. Vo HH, Brandstetter P, Kuchar M, Dong CST, Tran TC, Vo DH (2017) PI-based fuzzy speed controller with PWM direct torque control for induction motor drive. In: Proceedings of the 4th international conference AETA 2017, pp 811–820

  28. Zaky MS (2015) High performance DTC of induction motor drives over a wide speed range. Electr Eng 97(2):139–154

    Article  Google Scholar 

  29. Zeb K, Ali Z, Saleem K, Uddin W, Javed MA, Christofides N (2017) Indirect field-oriented control of induction motor drive based on adaptive fuzzy logic controller. Electr Eng 99(3):803–815

    Article  Google Scholar 

  30. Zeb K, Uddin W, Haider A, Belal S, Mehmood CA, Khan MA, Kim HJ (2018) Robust speed regulation of indirect vector control induction motor using fuzzy logic controllers based on optimization algorithms. Electr Eng 100(2):787–802

    Article  Google Scholar 

Download references

Acknowledgements

The paper was supported by the projects: Center for Intelligent Drives and Advanced Machine Control (CIDAM) Project, Reg. No. TE02000103 funded by the Technology Agency of the Czech Republic, Project Reg. No. SP2019/113 funded by the Student Grant Competition of VSB-Technical University of Ostrava.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kuchar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, H.H., Kuchar, M. & Brandstetter, P. Application of fuzzy logic in sensorless induction motor drive with PWM-DTC. Electr Eng 102, 129–140 (2020). https://doi.org/10.1007/s00202-019-00810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-019-00810-z

Keywords

Navigation