Skip to main content
Log in

Iterated local transitivity model for signed social networks

  • Original Paper
  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper, we generalize the iterated local transitivity (ILT) model for online social networks for signed networks. Signed networks focus on the type of relations (friendship or enmity) between the vertices (members of online social networks). The ILT model for signed networks provide an insight into how networks react to the addition of clone vertex. In this model, at each time step t and for already existing vertex x, a new vertex (clone) \(x'\) is added which joins to x and neighbors of x. The sign of new edge \(yx', \ y \in N[x]\) neighborhood of x is defined by calculating the number of positive and negative neighbors of x. We also discuss properties such as balance and clusterability, sign-compatibility and C-sign-compatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acharya, B.D.: Minus domination in a signed graph. J. Comb. Inf. Syst. Sci. 37(2–4), 333 (2012)

    MATH  Google Scholar 

  2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakker, L., Hare, W., Khosravi, H., Ramadanovic, B.: A social network model of investment behaviour in the stock market. Phys. A Stat. Mech. Appl. 389(6), 1223–1229 (2010)

    Article  Google Scholar 

  4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnes, J.A.: Class and Committees in a Norwegian Island Parish. Plenum, New York (1954)

    Google Scholar 

  6. Bonato, A., Hadi, N., Horn, P., Pralat, P., Wang, C.: Models of online social networks. Internet Math. 6(3), 285–313 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.: Network analysis in the social sciences. Science 323(5916), 892–895 (2009)

    Article  Google Scholar 

  8. Curran, S.R., Saguy, A.C.: Migration and cultural change: a role for gender and social networks? J. Int. Women’s Stud. 2(3), 54–77 (2013)

    Google Scholar 

  9. Davis, J.A.: Clustering and structural balance in graphs. Soc. Netw. Dev. Parad. 4, 27–34 (1977)

    Google Scholar 

  10. Dholakia, U.M., Bagozzi, R.P., Pearo, L.K.: A social influence model of consumer participation in network-and small-group-based virtual communities. Int. J. Res. Mark. 21(3), 241–263 (2004)

    Article  Google Scholar 

  11. Doreian, P., Stokman, F.: Evolution of Social Networks. Routledge, Abingdon (2013)

    MATH  Google Scholar 

  12. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005)

    Article  Google Scholar 

  13. Ellison, N.B., Boyd, D.M.: Social network sites: definition, history, and scholarship. J. Comput. Mediat. Commun. 13(1), 210–230 (2007)

    Article  Google Scholar 

  14. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–239 (1978)

    Article  Google Scholar 

  15. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of the 13th International Conference on World Wide Web, pp. 403–412. ACM (2004)

  16. Handcock, M.S.: Statistical models for social networks: inference and degeneracy. In: Breiger, R.L., Carley, K.M., Pattison, P. (eds.) Dynamic social network modelling and analysis. Workshop summary and papers. National research council, pp. 229–240. The National Academic Press, Washington (2002)

  17. Harary, F., et al.: On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–146 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henning, M.A.: Signed total domination in graphs. Discrete Math. 278(1), 109–125 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, B., Jiang, X.-Y., Ding, J.-F., Xie, Y.-B., Wang, B.-H.: A weighted network model for interpersonal relationship evolution. Phys. A Stat. Mech. Appl. 353, 576–594 (2005)

    Article  Google Scholar 

  20. Jackson, M.O., et al.: Social and Economic Networks, vol. 3. Princeton university press, Princeton (2008)

    MATH  Google Scholar 

  21. Knoke, D., Yang, S.: Social Network Analysis, vol. 154. Sage, Thousand Oaks (2008)

    Book  Google Scholar 

  22. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311(5757), 88–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: Phillips, S.Y., Han, J., Faloutsos, C. (eds.) Link Mining: Models, Algorithms, and Applications, vol. 1, pp. 337–357. Springer, New York (2010)

  24. Kunegis, J., Lommatzsch, A., Bauckhage, C.: The slashdot zoo: mining a social network with negative edges. In: Proceedings of the 18th International Conference on World Wide Web, pp. 741–750. ACM (2009)

  25. Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., De Luca, E.W., Albayrak, S.: Spectral analysis of signed graphs for clustering, prediction and visualization. SDM 10 (2010)

  26. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 462–470. ACM (2008)

  27. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: Proceedings of the 19th International Conference on World Wide Web, pp. 641–650. ACM (2010)

  28. Leskovec, J., Huttenlocher, D., Jon Kleinberg. Signed networks in social media. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM (2010)

  29. Mendonça, I., Figueiredo, R., Labatut, V., Michelon, P.: Relevance of negative links in graph partitioning: a case study using votes from the European parliament. arXiv preprint arXiv:1507.04215 (2015)

  30. Mislove, A., Koppula, H.S., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Growth of the flickr social network. In: Proceedings of the First Workshop on Online Social Networks, pp. 25–30. ACM (2008)

  31. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 29–42. ACM (2007)

  32. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007)

    Article  Google Scholar 

  33. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  34. Saramäki, J., Kivelä, M., Onnela, J.-P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)

    Article  Google Scholar 

  35. Sinha, D., Dhama, A.: Canonical-sign-compatibility of some signed graphs. J. Comb. Inf. Syst. Sci. 38(1–4), 129 (2013)

    MATH  Google Scholar 

  36. Sinha, D., Dhama, A.: Sign-compatibility of some derived signed graphs. Indian J. Math. 55(1), 23–40 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Sinha, D., Garg, P.: Canonical consistency of semi-total point signed graphs. Nat. Acad. Sci. Lett. 38(6), 497–500 (2015)

    Article  MathSciNet  Google Scholar 

  38. Sinha, D., Sethi, A.: An optimal algorithm to detect sign compatibility of a given sigraph. Nat. Acad. Sci. Lett. 38(3), 235–238 (2015)

    Article  MathSciNet  Google Scholar 

  39. Skyrms, B., Pemantle, R.: A dynamic model of social network formation. In: Gross, T., Sayama, H. (eds.) Adaptive networks, pp. 231–251. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  40. Szell, M., Lambiotte, R., Thurner, S.: Multirelational organization of large-scale social networks in an online world. Proc. Nat. Acad. Sci. 107(31), 13636–13641 (2010)

    Article  Google Scholar 

  41. Victor, P., Cornelis, C., Cock, M.D., Teredesai, A.M.: Trust-and distrust-based recommendations for controversial reviews. IEEE. Intell. Syst. 26(1), 48–55 (2011). doi:10.1109/MIS.2011.22

    Article  Google Scholar 

  42. Walikar, H.B., Motammanavar, S.V., Acharya, B.D.: Signed domination in signed graphs. J. Comb. Inf. Syst. Sci. 40(1–4), 107 (2015)

    MathSciNet  MATH  Google Scholar 

  43. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice hall, Upper Saddle River (2001)

    Google Scholar 

  44. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. (csur) 45(4), 43 (2013)

    Article  MATH  Google Scholar 

  45. Yang, B., Cheung, W.K., Liu, J.: Community mining from signed social networks. Knowl. Data Eng. IEEE Trans. 19(10), 1333–1348 (2007)

    Article  Google Scholar 

  46. Yang, S.-H., Smola, A.J., Long, B., Zha, H., Chang, Y.: Friend or frenemy? predicting signed ties in social networks. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 555–564. ACM (2012)

  47. Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4(1), 47–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zaslavsky, T.: Orientation of signed graphs. Eur. J. Comb. 12(4), 361–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zaslavsky, T.: Signed analogs of bipartite graphs. Discrete Math. 179(1), 205–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ziegler, C.-N., Lausen, G.: Propagation models for trust and distrust in social networks. Inf. Syst. Front. 7(4–5), 337–358 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Sinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, D., Sharma, D. Iterated local transitivity model for signed social networks. AAECC 29, 149–167 (2018). https://doi.org/10.1007/s00200-017-0333-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-017-0333-z

Keywords

Mathematics Subject Classification

Navigation