Skip to main content

Advertisement

Log in

Higher risk of osteoporosis in adult-onset asthma than childhood-onset asthma: from genetic and prospective evidence

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Both COA and AOA have a genetically causal effect on osteoporosis. COA and AOA were independently associated with incident osteoporosis, and the risk was greatly higher in AOA. Besides corticosteroids, the increased risk of osteoporosis among asthma patients should be attributed to genetic susceptibility and other asthma medications.

Purpose/Introduction

Childhood-onset asthma (COA) differs with adult-onset asthma (AOA) on genetic susceptibility, severity, and co-morbidities. Whether COA or AOA is independently associated with osteoporosis is unexplored. We aimed to determine the effects of COA and AOA on osteoporosis at genetic and individual level.

Methods

We used two-sample Mendelian randomization analysis to explore the causal effects of COA and AOA on osteoporosis. In the UK Biobank cohort, we included 478,289 osteoporosis-free participants at baseline (2006–2010). Participants were classified as non-asthma, COA, and AOA at recruitment. Multivariate Cox regression analysis was used to evaluate the effects of COA, AOA, and multiple asthma medications on incident osteoporosis risk.

Results

COA and AOA were causally related to osteoporosis, with odds ratio of 1.007 (95% confidence interval (CI), 1.0003–1.0132) and 1.012 (95% CI, 1.002–1.023), respectively. Multivariate Cox regression analysis suggested that COA (hazard ratio (HR), 1.46; 95% CI, 1.32–1.61) and AOA (HR, 1.70; 95% CI, 1.61–1.80) were independently associated with incident osteoporosis, and the risk was greatly higher in AOA (HR, 1.51; 95% CI, 1.34–1.70). In addition to corticosteroids, monotherapy with leukotriene modifiers (HR, 1.70; 95% CI, 1.20–2.42), long-acting beta agonists (HR, 1.49; 95% CI, 1.18–1.87), and short-acting beta agonists (HR, 1.72; 95% CI1.01–2.93) were independently associated with a higher risk of osteoporosis.

Conclusions

Both COA and AOA have a genetically causal effect on osteoporosis, and the risk of osteoporosis is greatly higher in AOA. Besides corticosteroids, the increased risk of osteoporosis among asthma patients should be attributed to genetic susceptibility and other asthma medications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The underlying data are accessed from the UK Biobank Resource under the application ID 81888, and materials and methods will be made freely available through the UK Biobank as part of this project.

References

  1. Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaur R, Chupp G (2019) Phenotypes and endotypes of adult asthma: Moving toward precision medicine. J Allergy Clin Immunol 144(1):1–12

    Article  PubMed  Google Scholar 

  3. Baan EJ, de Roos EW, Engelkes M et al (2022) Characterization of Asthma by Age of Onset: A Multi-Database Cohort Study. J Allergy Clin Immunol Pract 10(7):1825-1834.e8

    Article  CAS  PubMed  Google Scholar 

  4. Bush A, Menzies-Gow A (2009) Phenotypic differences between pediatric and adult asthma. Proc Am Thorac Soc 6(8):712–719

    Article  PubMed  Google Scholar 

  5. Morales E, Duffy D (2019) Genetics and Gene-Environment Interactions in Childhood and Adult Onset Asthma. Front Pediatr 7:499

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pividori M, Schoettler N, Nicolae DL, Ober C, Im HK (2019) Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Respir Med 7(6):509–522

    Article  PubMed  PubMed Central  Google Scholar 

  7. Trivedi M, Denton E (2019) Asthma in Children and Adults-What Are the Differences and What Can They Tell us About Asthma. Front Pediatr 7:256

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dong Y, Song K, Wang P et al (2022) Blocking the cytohesin-2/ARF1 axis by SecinH3 ameliorates osteoclast-induced bone loss via attenuating JNK-mediated IRE1 endoribonuclease activity. Pharmacol Res 185:106513

    Article  CAS  PubMed  Google Scholar 

  9. Dong Y, Kang H, Peng R et al (2022) Global, Regional, and National Burden of Low Bone Mineral Density From 1990 to 2019: Results From the Global Burden of Disease Study 2019. Front Endocrinol (Lausanne) 13:870905

    Article  PubMed  Google Scholar 

  10. Dong Y, Peng R, Kang H et al (2022) Global incidence, prevalence, and disability of vertebral fractures: a systematic analysis of the global burden of disease study 2019. Spine J 22(5):857–868

    Article  PubMed  Google Scholar 

  11. Dahl R (2006) Systemic side effects of inhaled corticosteroids in patients with asthma. Respir Med 100(8):1307–1317

    Article  PubMed  Google Scholar 

  12. Waljee AK, Rogers MA, Lin P et al (2017) Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ 357:j1415

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chalitsios CV, Shaw DE, McKeever TM (2021) Corticosteroids and bone health in people with asthma: A systematic review and meta-analysis. Respir Med 181:106374

    Article  PubMed  Google Scholar 

  14. Chalitsios CV, McKeever TM, Shaw DE (2021) Incidence of osteoporosis and fragility fractures in asthma: a UK population-based matched cohort study. Eur Respir J 57(1): 2001251 [pii]

  15. Cui Z, Feng H, He B, He J, Tian Y (2021) Relationship Between Serum Amino Acid Levels and Bone Mineral Density: A Mendelian Randomization Study. Front Endocrinol (Lausanne) 12:763538

    Article  PubMed  Google Scholar 

  16. Davies NM, Holmes MV, Davey SG (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601

    Article  PubMed  PubMed Central  Google Scholar 

  17. Skrivankova VW, Richmond RC, Woolf B et al (2021) Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 326(16):1614–1621

    Article  PubMed  Google Scholar 

  18. Freuer D, Linseisen J, Meisinger C (2022) Asthma and the risk of gastrointestinal disorders: a Mendelian randomization study. BMC Med 20(1):82

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahn K, Penn RB, Rattan S, Panettieri RA Jr, Voight BF, An SS (2023) Mendelian Randomization Analysis Reveals a Complex Genetic Interplay among Atopic Dermatitis, Asthma, and Gastroesophageal Reflux Disease. Am J Respir Crit Care Med 207(2):130–137

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Z, Zhu X, Liu CL et al (2019) Shared genetics of asthma and mental health disorders: a large-scale genome-wide cross-trait analysis. Eur Respir J 54(6): 1901507 [pii]

  21. Chen H, Chen W, Zheng L (2022) Genetic liability to asthma and risk of cardiovascular diseases: A Mendelian randomization study. Front Genet 13:879468

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ferreira M, Mathur R, Vonk JM et al (2019) Genetic Architectures of Childhood- and Adult-Onset Asthma Are Partly Distinct. Am J Hum Genet 104(4):665–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yavorska OO, Burgess S (2017) MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int J Epidemiol 46(6):1734–1739

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burgess S, Davey Smith G, Davies NM et al (2019) Guidelines for performing Mendelian randomization investigations. Wellcome Open Res 4:186

    Article  PubMed  Google Scholar 

  25. Hemani G, Bowden J, Davey SG (2018) Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 27(R2):R195–R208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG (2017) Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. Epidemiology 28(1):30–42

    Article  PubMed  Google Scholar 

  27. Chalitsios CV, Shaw DE, McKeever TM (2021) Risk of osteoporosis and fragility fractures in asthma due to oral and inhaled corticosteroids: two population-based nested case-control studies. Thorax 76(1):21–28

    Article  PubMed  Google Scholar 

  28. Strachan David P, Butland Barbara K (1996) Incidence and prognosis of asthma and wheezing illness from early childhood to age 33 in a. Bmj Br Med J

  29. Wright AL (2002) Epidemiology of asthma and recurrent wheeze in childhood. Clin Rev Allergy Immunol 22(1):33–44

    Article  PubMed  Google Scholar 

  30. Boer GMD, Tramper-Stranders GA, Houweling L, Zelst CMV, Braunstahl GJ (2021) Adult but not childhood onset asthma is associated with the metabolic syndrome, independent from body mass index. Respir Med

  31. Akar-Ghibril N, Casale T, Custovic A, Phipatanakul W (2020) Allergic Endotypes and Phenotypes of Asthma. J Allergy Clin Immunol Pract 8(2):429–440

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fuchs O, Bahmer T, Rabe KF, von Mutius E (2017) Asthma transition from childhood into adulthood. Lancet Respir Med 5(3):224–234

    Article  PubMed  Google Scholar 

  33. Van Den Toorn L, Shelley EO, De Jongste J, Leman K, Prins JB (2001) Airway inflammation is present during clinical remission of atopic asthma. Am J Respir Crit Care Med 164(11): 2107–2113

  34. Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R (2021) T-Cell Mediated Inflammation in Postmenopausal Osteoporosis. Front Immunol 12:687551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Staa TPV, Leufkens HGM, Abenhaim L, Zhang B, Cooper C (2005) Use of Oral Corticosteroids and Risk of Fractures. J Bone Min Res 20(8):1486–1493

    Article  Google Scholar 

  36. Davide Gatti and et al (2011) Allergy and the bone: unexpected relationships. Ann Allergy Asthma Immunol

  37. Pasaoglu G, Gok H, Mungan D, Sonel B, Yalcin P, Misirligil Z (2006) Does the combination of inhaled steroids with long acting beta2 agonists decrease the risk for osteoporosis? A 1-year prospective follow-up study. Rheumatol Int 27(2):141–146

    Article  CAS  PubMed  Google Scholar 

  38. Lommatzsch M, Virchow JC (2014) Severe asthma: definition, diagnosis and treatment. Dtsch Arztebl Int 111(50):847–855

    PubMed  PubMed Central  Google Scholar 

  39. Montuschi P, Peters-Golden ML (2010) Leukotriene modifiers for asthma treatment. Clin Exp Allergy 40(12):1732–1741

    Article  CAS  PubMed  Google Scholar 

  40. Kinjo M, Setoguchi S, Solomon DH (2008) Antihistamine therapy and bone mineral density: analysis in a population-based US sample. Am J Med 121(12):1085–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Holgate ST, Finnerty JP (1989) Antihistamines in asthma. J Allergy Clin Immunol 83(2 Pt 2):537–547

    Article  CAS  PubMed  Google Scholar 

  42. Yamauchi K, Ogasawara M (2019) The Role of Histamine in the Pathophysiology of Asthma and the Clinical Efficacy of Antihistamines in Asthma Therapy. Int J Mol Sci 20(7):1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rafferty P (1990) Antihistamines in the treatment of clinical asthma. J Allergy Clin Immunol 86(4 Pt 2):647–650

    Article  CAS  PubMed  Google Scholar 

  44. Weldon D (2009) The effects of corticosteroids on bone growth and bone density. Ann Allergy Asthma Immunol. 103(1): 3–11; quiz 11–3, 50

  45. Wixted JJ, Fanning PJ, Gaur T, O’Connell SL, Lian JB (2010) Enhanced fracture repair by leukotriene antagonism is characterized by increased chondrocyte proliferation and early bone formation: a novel role of the cysteinyl LT-1 receptor. J Cell Physiol 221(1):31–39

    Article  Google Scholar 

  46. Rossini M, Viapiana O, Adami S (1998) Instrumental diagnosis of osteoporosis. Aging (Milano) 10(3):240–248

    CAS  PubMed  Google Scholar 

  47. Maricic M, Chen Z (2000) Bone densitometry. Clin Lab Med 20(3):469–488

    Article  CAS  PubMed  Google Scholar 

  48. Moayyeri A, Adams JE, Adler RA et al (2012) Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporos Int 23(1):143–153

    Article  CAS  PubMed  Google Scholar 

  49. Ekman A, Michaëlsson K, Petrén-Mallmin M, Ljunghall S, Mallmin H (2001) DXA of the hip and heel ultrasound but not densitometry of the fingers can discriminate female hip fracture patients from controls: a comparison between four different methods. Osteoporos Int 12(3):185–191

    Article  CAS  PubMed  Google Scholar 

  50. Gould H, Brennan SL, Nicholson GC, Kotowicz MA, Henry MJ, Pasco JA (2013) Calcaneal ultrasound reference ranges for Australian men and women: the Geelong Osteoporosis Study. Osteoporos Int 24(4):1369–1377

    Article  CAS  PubMed  Google Scholar 

  51. Halling A, Persson GR, Berglund J, Johansson O, Renvert S (2005) Comparison between the Klemetti index and heel DXA BMD measurements in the diagnosis of reduced skeletal bone mineral density in the elderly. Osteoporos Int 16(8):999–1003

    Article  PubMed  Google Scholar 

  52. Yuan S, Lemming EW, Michaëlsson K, Larsson SC (2020) Plasma phospholipid fatty acids, bone mineral density and fracture risk: Evidence from a Mendelian randomization study. Clin Nutr 39(7):2180–2186

    Article  PubMed  Google Scholar 

  53. Curtis EM, Codd V, Nelson C et al (2022) Telomere Length and Risk of Incident Fracture and Arthroplasty: Findings From UK Biobank. J Bone Miner Res 37(10):1997–2004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the participants in the UK Biobank for their participation in the research. The study was conducted using the UK Biobank Resource (Application ID: 81888).

Funding

The National Natural Science Foundation of China (No. 82072500, 82002354).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kehan Song or Feng Li.

Ethics declarations

Conflict of interest

Weizhong Ding, Yong Huang, Guanghui Li, Yimin Dong, Xiaochen Li, Minglong Wu, Kehan Song, and Feng Li declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Huang, Y., Li, G. et al. Higher risk of osteoporosis in adult-onset asthma than childhood-onset asthma: from genetic and prospective evidence. Osteoporos Int 35, 659–668 (2024). https://doi.org/10.1007/s00198-023-07004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-07004-1

Keywords

Navigation