Skip to main content

Advertisement

Log in

Vertebral fracture in postmenopausal Chinese women: a population-based study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In a random sample of postmenopausal Chinese women, the prevalence of radiographic vertebral fractures increased from 13% between ages 50 and 59 to over 50% after age 80 years. A model with seven clinical risk factors predicted the probability of vertebral fractures as well with as without BMD and better than a model with only three risk factors. More than half an hour of outdoor activity per day might correlate with lower risk of vertebral fracture in this population.

Introduction

We aimed to describe the prevalence and develop a model for prediction of radiographic vertebral fractures in a large random sample of postmenopausal Chinese women.

Methods

We enrolled 1760 women from an age-stratified random sample of postmenopausal women in Beijing, China. The presence of vertebral fracture was assessed by semi-quantitative grading of lateral thoracolumbar radiographs, risk factors by interview, bone mineral density (BMD) of the proximal femur and lumbar spine by dual x-ray absorptiometry (DXA), and markers of bone turnover from a fasting blood sample. Associations of these factors were analyzed in logistic models and discrimination by areas of receiver operating characteristics curves (AUC).

Results

The prevalence of vertebral fracture, ranged from 13.4% ages 50 to 59 years old to 58.1% at age 80 years or older. Older age, a history of non-vertebral fracture, lower femoral neck BMD T-score, body mass index (BMI), height loss, housework, and less than half an hour of outdoor activity were significantly associated with increased probability of having a vertebral fracture. A model with those seven factors had a similar AUC with or without BMD and performed better than a simple model with three factors.

Conclusion

This study is from a true random sample of postmenopausal women in urban China with high response rate. The prevalence of vertebral fractures in postmenopausal women in Beijing increases from 13% under age 60 to over 50% by age 80 years. A model with seven clinical risk factors with or without BMD is better than simple models and may guide the use of spine x-rays to identify women with vertebral fractures. More than half an hour of outdoor activity might correlate with lower risk of vertebral fracture in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  2. Kanis JA, Johnell O, De Laet C et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382

    Article  CAS  PubMed  Google Scholar 

  3. Delmas PD, Genant HK, Crans GG et al (2003) Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone 33:522–532

    Article  CAS  PubMed  Google Scholar 

  4. O'Neill TW, Cockerill W, Matthis C et al (2004) Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporos Int 15:760–765

    Article  PubMed  Google Scholar 

  5. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800

    Article  CAS  PubMed  Google Scholar 

  6. Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR (1999) Vertebral fractures and mortality in older women: a prospective study. Arch Intern Med 159:1215–1220

    Article  CAS  PubMed  Google Scholar 

  7. Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. New Engl J Med 356:1809–1822

    Article  CAS  PubMed  Google Scholar 

  8. Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. New Engl J Med 361:756–765

    Article  CAS  PubMed  Google Scholar 

  9. Chen P, Miller PD, Delmas PD, Misurski DA, Krege JH (2006) Change in lumbar spine BMD and vertebral fracture risk reduction in teriparatide-treated postmenopausal women with osteoporosis. J Bone Miner Res 21:1785–1790

    Article  CAS  PubMed  Google Scholar 

  10. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936

    Article  PubMed  Google Scholar 

  11. Kanis JA, Johansson H, Johnell O et al (2005) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742

    Article  PubMed  Google Scholar 

  12. Kanis JA, Johnell O, Oden A et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    Article  CAS  PubMed  Google Scholar 

  13. Wong SYS, Kwok T, Woo J et al (2005) Bone mineral density and the risk of peripheral arterial disease in men and women: results from Mr. and Ms Os, Hong Kong. Osteoporos Int 16:1933–1938

    Article  CAS  PubMed  Google Scholar 

  14. Ling X, Cummings SR, Mingwei Q et al (2000) Vertebral fractures in Beijing, China: the Beijing osteoporosis project. J Bone Miner Res 15:2019–2025

    Article  CAS  PubMed  Google Scholar 

  15. Xia WB, He SL, Xu L et al (2012) Rapidly increasing rates of hip fracture in Beijing, China. J Bone Miner Res 27(1):125

    Article  PubMed  Google Scholar 

  16. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  17. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S (1997) A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 16:965–980

    Article  CAS  PubMed  Google Scholar 

  18. Pulkstenis E, Robinson TJ (2002) Two goodness-of-fit tests for logistic regression models with continuous covariates. Stat Med 21:79–93

    Article  PubMed  Google Scholar 

  19. Pencina MJ, D'Agostino RB Sr, D'Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172

    Article  PubMed  Google Scholar 

  20. Suman Kundu YSA, A. Cecile J.W. Janssens Package 'PredictABEL', URL: http://www.genabel.org/packages/PredictABEL

  21. Team RC 2013 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  22. JOSEPH MELTONL et al (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129(5):1000–1011

    Article  Google Scholar 

  23. Tromp AM, Ooms ME, Popp-Snijders C, Roos JC, Lips P (2000) Predictors of fractures in elderly women. Osteoporos Int 11:134–140

    Article  CAS  PubMed  Google Scholar 

  24. Albertsson D, Mellstrom D, Petersson C, Thulesius H, Eggertsen R (2010) Hip and fragility fracture prediction by 4-item clinical risk score and mobile heel BMD: a women cohort study. BMC Musculoskel Dis 11:55

    Article  Google Scholar 

  25. Bow CH, Tsang SW, Loong CH, Soong CS, Yeung SC, Kung AW (2011) Bone mineral density enhances use of clinical risk factors in predicting ten-year risk of osteoporotic fractures in Chinese men: the Hong Kong osteoporosis study. Osteoporos Int 22:2799–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanis JA, McCloskey E, Johansson H, Oden A, Leslie WD (2012) FRAX((R)) with and without bone mineral density. Calcif Tissue Int 90:1–13

    Article  CAS  PubMed  Google Scholar 

  27. Nevitt MC, Cummings SR, Stone KL et al (2005) Risk factors for a first-incident radiographic vertebral fracture in women ≥65 years of age: the study of osteoporotic fractures. J Bone Miner Res 20:131–140

    Article  PubMed  Google Scholar 

  28. Borer KT (2005) Physical activity in the prevention and amelioration of osteoporosis in women. Sports Med 35(9):779–830

    Article  PubMed  Google Scholar 

  29. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, Macera CA, Castaneda-Sceppa C (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sport Exer 39:1435–1445

    Article  Google Scholar 

  30. Pollintine P, Dolan P, Tobias JH, Adams MA (2004) Intervertebral disc degeneration can lead to “stress-shielding” of the anterior vertebral body: a cause of osteoporotic vertebral fracture? Spine 29(7):774–782

    Article  PubMed  Google Scholar 

  31. Chang, Y. F.,Chang, C. S. (2016) Effects of age and body mass index on thoracolumbar spine x-ray for diagnosing osteoporosis in elderly women: Tianliao old people (TOP) Study 07. PLoS One 11(9)

  32. Pirro M, Fabbriciani G, Leli C (2010) High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab 28(1):88–93

    Article  PubMed  Google Scholar 

  33. Sanfélix-Gimeno G, Sanfelix-Genovés J, Hurtado I (2013) Vertebral fracture risk factors in postmenopausal women over 50 in Valencia, Spain. A population-based cross-sectional study. Bone 52(1):393–399

    Article  PubMed  Google Scholar 

  34. Nielson CM, Marshall LM (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502

    Article  PubMed  Google Scholar 

  35. Couris CM, Chapurlat RD, Kanis (2012) FRAX® probabilities and risk of major osteoporotic fracture in France. Osteoporos Int 23(9):2321–2327

    Article  CAS  PubMed  Google Scholar 

  36. De Laet C, Kanis JA, Odén A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16(11):1330–1338

    Article  CAS  PubMed  Google Scholar 

  37. Herrera A, Mateo J, Gil-Albarova J (2015) Prevalence of osteoporotic vertebral fracture in Spanish women over age 45. Maturitas 80(3):288–295

    Article  PubMed  Google Scholar 

  38. Xu W, Perera S, Medich D (2011) Height loss, vertebral fractures, and the misclassification of osteoporosis. Bone 48(2):307–311

    Article  PubMed  Google Scholar 

  39. Tobias JH, Hutchinson AP, Hunt LP (2007) Use of clinical risk factors to identify postmenopausal women with vertebral fractures. Osteoporos Int 18(1):35–43

    Article  CAS  PubMed  Google Scholar 

  40. Siminoski K, Warshawski RS, Jen H (2006) The accuracy of historical height loss for the detection of vertebral fractures in postmenopausal women. Osteoporos Int 17(2):290–296

    Article  CAS  PubMed  Google Scholar 

  41. Gunnes M, Lehmann EH, Mellstrom D (1996) The relationship between anthropometric measurements and fractures in women. Bone 19(4):407–413

    Article  CAS  PubMed  Google Scholar 

  42. Edward TM, Eric DG, Susan AS (2009) Which women should be selected for vertebral fracture assessment? Comparing different methods of targeting VFA. Calcified Tissue Int 85(3):203–210

    Article  Google Scholar 

  43. Chinese Society of Osteoporosis And Bone Mineral Research (2011) Guidelines for diagnosis and treatment of primary osteoporosis 2011. Chin J Osteoporosis and Bone Miner Res 04(1):2–17

    Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from The Ministry of Science and Technology of the People’s Republic of China (National Public Welfare Research Program 2005DIB1J085, National Key Technology R &D Program 2006BAI03B03, and National Science and Technology Major Projects for “Major New Drugs Innovation and Development” 2008ZX09312-016), National Natural Science Foundation of China (No.81070687 and 81170805), Beijing Natural Science Foundation (No. 7121012), Scientific Research Foundation of Beijing Medical Development (No. 2007-3029), and National Key Program of Clinical Science (WBYZ2011-873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Xia.

Ethics declarations

Conflict of interest

None.

Electronic supplementary material

ESM 1

(DOCX 21 kb)

ESM 2

(DOC 2836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L..., Chen, L., Xia, W. et al. Vertebral fracture in postmenopausal Chinese women: a population-based study. Osteoporos Int 28, 2583–2590 (2017). https://doi.org/10.1007/s00198-017-4085-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4085-1

Keywords

Navigation