Skip to main content

Advertisement

Log in

IL-4 administration exerts preventive effects via suppression of underlying inflammation and TNF-α-induced apoptosis in steroid-induced osteonecrosis

Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Macrophages play an important role during the development of steroid-induced osteonecrosis. Interleukin (IL)-4 administration helped reduce the infiltration of M1 phenotypic macrophages and maintain the activation of M2 phenotypic macrophages, resulting in restriction of inflammation and decrease in osteocyte apoptosis. The results indicated the therapeutic potential of IL-4 in prevention of steroid-induced osteonecrosis.

Introduction

Steroid-induced osteonecrosis (ON) is a debilitating disease characterized by the activation and infiltration of macrophages into the necrotic site. This study aimed to investigate the effects of IL-4 administration on macrophage polarization and the involved signaling pathways.

Methods

Fifty-six BALB/c mice were randomly divided into two groups, group M (model group) and group MI (treatment group), each containing 28 mice. ON model was induced by the injection of methylprednisolone (MPS). The mice in group MI received intra-abdominal injections of 2 μg/100 g/day of rIL-4 for five consecutive days, following the administration of MPS. Osteonecrosis was verified by histopathological staining. The expression of tumor necrosis factor-alpha (TNF-α) was analyzed by ELISA and immunohistochemistry. The infiltration of M1/M2 macrophages was examined by the expression of specific makers of F4/80, CD11c, and CD206 protein. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and the apoptotic signal molecules such as STAT1 and caspase-3 were examined.

Results

Histopathological observations indicated that IL-4 administration reduced the incidence of ON and the accumulation of osteoclasts. IL-4 administration inhibited the expression of TNF-α and reduced the infiltration of M1 phenotypic macrophages and maintained relatively high level of M2 phenotypic macrophages. Additionally, TUNEL assay suggested that IL-4 intervention could reduce the number of apoptotic cells in the necrotic zone. The anti-apoptotic mechanisms were related to STAT1 phosphorylation and the activation of caspase-3.

Conclusions

Il-4 administration could alleviate steroid associated ON in mice by inhibiting the inflammatory response, the infiltration of M1 phenotypic macrophages, and suppressing TNF-a-induced osteocytic apoptosis by inhibiting the STAT1-caspase-3 signal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takano-Murakami R, Tokunaga K, Kondo N, Ito T, Kitahara H, Ito M, Endo N (2009) Glucocorticoid inhibits bone regeneration after osteonecrosis of the femoral head in aged female rats. Tohoku J Exp Med 217:51–58

    Article  PubMed  Google Scholar 

  2. McMahon RE, Bouquot JE, Glueck CJ, Spolnik KJ, Adams WR (2004) Osteonecrosis: a multifactorial etiology. J Oral Maxillofac Surg 62:904–905

    Article  PubMed  Google Scholar 

  3. Weinstein RS (2012) Glucocorticoid-induced osteonecrosis. Endocrine 41(2):183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ross FP, Teitelbaum SL (2005) alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev 208:88–105

    Article  CAS  PubMed  Google Scholar 

  5. Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–S17

    Article  CAS  PubMed  Google Scholar 

  6. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  CAS  PubMed  Google Scholar 

  7. Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175:342–349

    Article  CAS  PubMed  Google Scholar 

  8. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  9. Nowicki P, Chaudhary H (2007) Total hip replacement in renal transplant patients. J Bone Joint Surg (Br) 89:1561–1566

    Article  CAS  Google Scholar 

  10. Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, Dussiot M, Levillain O, Graff-Dubois S, Nicoletti A, Caligiuri G (2010) Macrophage plasticity in experimental atherosclerosis. PLoS One 5:e8852

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kharraz Y, Guerra J, Mann CJ, Serrano AL, Munoz-Canoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 491497

  13. Thorp EB (2012) Contrasting inflammation resolution during atherosclerosis and post myocardial infarction at the level of monocyte/macrophage phagocytic clearance. Front Immunol 3:39

    Article  PubMed  PubMed Central  Google Scholar 

  14. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG (2011) Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet 20:790–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF (2012) Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33:3792–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  CAS  PubMed  Google Scholar 

  18. Wu X, Xu W, Feng X, He Y, Liu X, Gao Y, Yang S, Shao Z, Yang C, Ye Z (2015) TNF-a mediated inflammatory macrophage polarization contributes to the pathogenesis of steroid-induced osteonecrosis in mice. Int J Immunopathol Pharmacol 28:351–361

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto T, Irisa T, Sugioka Y, Sueishi K (1997) Effects of pulse methylprednisolone on bone and marrow tissues: corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum 40:2055–2064

  20. Chen WL, Lin CT, Yao CC, Huang YH, Chou YB, Yin HS, Hu FR (2006) In-vitro effects of dexamethasone on cellular proliferation, apoptosis, and Na+-K+-ATPase activity of bovine corneal endothelial cells. Ocul Immunol Inflamm 14:215–223

    Article  CAS  PubMed  Google Scholar 

  21. Liesegang P, Romalo G, Sudmann M, Wolf L, Schweikert HU (1994) Human osteoblast-like cells contain specific, saturable, high-affinity glucocorticoid, androgen, estrogen, and 1 alpha,25-dihydroxycholecalciferol receptors. J Androl 15:194–199

    CAS  PubMed  Google Scholar 

  22. Gu G, Hentunen TA, Nars M, Harkonen PL, Vaananen HK (2005) Estrogen protects primary osteocytes against glucocorticoid-induced apoptosis. Apoptosis 10:583–595

    Article  CAS  PubMed  Google Scholar 

  23. Dempster DW, Moonga BS, Stein LS, Horbert WR, Antakly T (1997) Glucocorticoids inhibit bone resorption by isolated rat osteoclasts by enhancing apoptosis. J Endocrinol 154:397–406

    Article  CAS  PubMed  Google Scholar 

  24. Silvestrini G, Mocetti P, Ballanti P, Di Grezia R, Bonucci E (1999) Cytochemical demonstration of the glucocorticoid receptor in skeletal cells of the rat. Endocr Res 25:117–128

    Article  CAS  PubMed  Google Scholar 

  25. Weinstein RS, Chen JR, Powers CC, Stewart SA, Landes RD, Bellido T, Jilka RL, Parfitt AM, Manolagas SC (2002) Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest 109:1041–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bune AJ, Hayman AR, Evans MJ, Cox TM (2001) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology 102:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miranville A, Herling AW, Biemer-Daub G, Voss MD (2010) Reversal of inflammation-induced impairment of glucose uptake in adipocytes by direct effect of CB1 antagonism on adipose tissue macrophages. Obesity (Silver Spring) 18:2247–2254

    Article  CAS  Google Scholar 

  28. Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88:33–39

    Article  CAS  PubMed  Google Scholar 

  29. Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068

    Article  CAS  PubMed  Google Scholar 

  30. Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li YP (2003) TNF-alpha is a mitogen in skeletal muscle. Am J Physiol Cell Physiol 285:C370–C376

    Article  CAS  PubMed  Google Scholar 

  32. Villalta SA, Deng B, Rinaldi C, Wehling-Henricks M, Tidball JG (2011) IFN-gamma promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation. J Immunol 187:5419–5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142:481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Berger C, Hiestand P, Kindler-Baumann D, Rudin M, Rausch M (2006) Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR Biomed 19:101–107

    Article  PubMed  Google Scholar 

  35. Okazaki S, Nishitani Y, Nagoya S, Kaya M, Yamashita T, Matsumoto H (2009) Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway. Rheumatology (Oxford) 48:227–232

    Article  CAS  Google Scholar 

  36. Scheper MA, Badros A, Chaisuparat R, Cullen KJ, Meiller TF (2009) Effect of zoledronic acid on oral fibroblasts and epithelial cells: a potential mechanism of bisphosphonate-associated osteonecrosis. Br J Haematol 144:667–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castro R, Zou J, Secombes CJ, Martin SA (2011) Cortisol modulates the induction of inflammatory gene expression in a rainbow trout macrophage cell line. Fish Shellfish Immunol 30:215–223

    Article  CAS  PubMed  Google Scholar 

  38. Weinstein RS (2011) Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med 365:62–70

    Article  CAS  PubMed  Google Scholar 

  39. Weinstein RS (2012) Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin N Am 41:595–611

    Article  Google Scholar 

  40. Miyamoto T (2013) STATs and macrophage fusion. JAKSTAT 2:e24777

    PubMed  PubMed Central  Google Scholar 

  41. Yamamoto T, Irisa T, Sugioka Y, Sueishi K (1997) Effects of pulse methylprednisolone on bone and marrow tissues: corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum 40:2055–2064

    Article  CAS  PubMed  Google Scholar 

  42. Weinstein RS, Nicholas RW, Manolagas SC (2000) Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab 85:2907–2912

    CAS  PubMed  Google Scholar 

  43. Peled E, Bejar J, Zinman C, Boss JH (2007) Vasculature deprivation-induced osteonecrosis of rats’ femoral heads associated with the formation of deep surface depressions. Arch Orthop Trauma Surg 127:369–374

    Article  PubMed  Google Scholar 

  44. Calder JD, Buttery L, Revell PA, Pearse M, Polak JM (2004) Apoptosis—a significant cause of bone cell death in osteonecrosis of the femoral head. J Bone Joint Surg (Br) 86:1209–1213

    Article  CAS  Google Scholar 

  45. Silverman SL, Lane NE (2009) Glucocorticoid-induced osteoporosis. Curr Osteoporos Rep 7:23–26

    Article  PubMed  Google Scholar 

  46. Wu X, Yang S, Wang H, Meng C, Xu W, Duan D, Liu X (2013) G-CSF/SCF exert beneficial effects via anti-apoptosis in rabbits with steroid-associated osteonecrosis. Exp Mol Pathol 94:247–254

    Article  CAS  PubMed  Google Scholar 

  47. Mutijima E, De Maertelaer V, Deprez M, Malaise M, Hauzeur JP (2014) The apoptosis of osteoblasts and osteocytes in femoral head osteonecrosis: its specificity and its distribution. Clin Rheumatol 33:1791–1795

    Article  PubMed  Google Scholar 

  48. Glimcher MJ, Kenzora JE (1979) The biology of osteonecrosis of the human femoral head and its clinical implications. III. Discussion of the etiology and genesis of the pathological sequelae; comments on treatment. Clin Orthop Relat Res 140:273–312

  49. Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A, You L (2011) Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem 112:2412–2423

    Article  CAS  PubMed  Google Scholar 

  50. Song R, Liu X, Zhu J, Gao Q, Wang Q, Zhang J, Wang D, Cheng L, Hu D, Yuan Y, Gu J, Liu Z (2015) RhoV mediates apoptosis of RAW264.7 macrophages caused by osteoclast differentiation. Mol Med Rep 11:1153–1159

    CAS  PubMed  Google Scholar 

  51. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    Article  CAS  PubMed  Google Scholar 

  52. Salvesen GS (2002) Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 9:3–5

    Article  PubMed  Google Scholar 

  53. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M, Bus CJ, Kadkhoda K, Wiechec E, Halayko AJ, Los M (2009) Apoptosis and cancer: mutations within caspase genes. J Med Genet 46:497–510

    Article  CAS  PubMed  Google Scholar 

  54. Woo SH, Park IC, Park MJ, Lee HC, Lee SJ, Chun YJ, Lee SH, Hong SI, Rhee CH (2002) Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int J Oncol 21:57–63

    CAS  PubMed  Google Scholar 

  55. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387–396

    Article  CAS  PubMed  Google Scholar 

  56. Kumar A, Commane M, Flickinger TW, Horvath CM, Stark GR (1997) Defective TNF-alpha-induced apoptosis in STAT1-null cells due to low constitutive levels of caspases. Science 278:1630–1632

    Article  CAS  PubMed  Google Scholar 

  57. Nagata S, Golstein P (1995) The Fas death factor. Science 267:1449–1456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the financial support of the National Science Foundation of China (NSFC, 81201393; 2013YGYL015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Wang or Z. Ye.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Feng, X., He, Y. et al. IL-4 administration exerts preventive effects via suppression of underlying inflammation and TNF-α-induced apoptosis in steroid-induced osteonecrosis. Osteoporos Int 27, 1827–1837 (2016). https://doi.org/10.1007/s00198-015-3474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3474-6

Keywords

Navigation