Skip to main content

Advertisement

Log in

Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA [published erratum appears in Science 1989 Sep 29;245(4925):1437]. Science 245:1066–1073

    Article  CAS  PubMed  Google Scholar 

  2. Stoltz DA, Meyerholz DK, Welsh MJ (2015) Origins of cystic fibrosis lung disease. N Engl J Med 372:351–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Boyle MP, De Boeck K (2013) A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med 1:158–163

    Article  PubMed  Google Scholar 

  4. Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726

    Article  CAS  PubMed  Google Scholar 

  5. Cheng SH, Gregory RJ, Marshall J, Paul S, Souza DW, White GA, O’Riordan CR, Smith AE (1990) Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834

    Article  CAS  PubMed  Google Scholar 

  6. Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23:146–158

    Article  CAS  PubMed  Google Scholar 

  7. O’Sullivan BP, Freedman SD (2009) Cystic fibrosis. Lancet 373:1891–1904

    Article  PubMed  Google Scholar 

  8. Kelly A, Moran A (2013) Update on cystic fibrosis-related diabetes. J Cyst Fibros 12:318–331

    Article  PubMed  Google Scholar 

  9. Rowland M, Bourke B (2011) Liver disease in cystic fibrosis. Curr Opin Pulm Med 17:461–466

    PubMed  Google Scholar 

  10. Plant BJ, Goss CH, Plant WD, Bell SC (2013) Management of comorbidities in older patients with cystic fibrosis. Lancet Respir Med 1:164–174

    Article  PubMed  Google Scholar 

  11. Stalvey MS, Clines GA (2013) Cystic fibrosis-related bone disease: insights into a growing problem. Curr Opin Endocrinol Diabetes Obes 20:547–552

    Article  PubMed  PubMed Central  Google Scholar 

  12. Conwell LS, Chang AB (2014) Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev 3:CD002010

    Google Scholar 

  13. Haworth CS, Webb AK, Egan JJ, Selby PL, Hasleton PS, Bishop PW, Freemont TJ (2000) Bone histomorphometry in adult patients with cystic fibrosis. Chest 118:434–439

    Article  CAS  PubMed  Google Scholar 

  14. Javier RM, Jacquot J (2011) Bone disease in cystic fibrosis: what’s new? Joint Bone Spine 78:445–450

    Article  PubMed  Google Scholar 

  15. Le Heron L, Guillaume C, Velard F, Braux J, Touqui L, Moriceau S, Sermet-Gaudelus I, Laurent-Maquin D, Jacquot J (2010) Cystic fibrosis transmembrane conductance regulator (CFTR) regulates the production of osteoprotegerin (OPG) and prostaglandin (PG) E(2) in human bone. J Cyst Fibros 9:69–72

    Article  PubMed  CAS  Google Scholar 

  16. Shead EF, Haworth CS, Condliffe AM, McKeon DJ, Scott MA, Compston JE (2007) Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bone. Thorax 62:650–651

    Article  PubMed  PubMed Central  Google Scholar 

  17. Aris RM, Merkel PA, Bachrach LK, Borowitz DS, Boyle MP, Elkin SL, Guise TA, Hardin DS, Haworth CS, Holick MF, Joseph PM, O’Brien K, Tullis E, Watts NB, White TB (2005) Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab 90:1888–1896

    Article  CAS  PubMed  Google Scholar 

  18. Bianchi ML, Romano G, Saraifoger S, Costantini D, Limonta C, Colombo C (2006) BMD and body composition in children and young patients affected by cystic fibrosis. J Bone Miner Res 21:388–396

    Article  PubMed  Google Scholar 

  19. Sermet-Gaudelus I, Souberbielle JC, Ruiz JC, Vrielynck S, Heuillon B, Azhar I, Cazenave A, Lawson-Body E, Chedevergne F, Lenoir G (2007) Low bone mineral density in young children with cystic fibrosis. Am J Respir Crit Care Med 175:951–957

    Article  PubMed  Google Scholar 

  20. Paccou J, Zeboulon N, Combescure C, Gossec L, Cortet B (2010) The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int 86:1–7

    Article  CAS  PubMed  Google Scholar 

  21. Ambroszkiewicz J, Sands D, Gajewska J, Chelchowska M, Laskowska-Klita T (2013) Bone turnover markers, osteoprotegerin and RANKL cytokines in children with cystic fibrosis. Adv Med Sci 58:338–343

    Article  CAS  PubMed  Google Scholar 

  22. Sermet-Gaudelus I, Bianchi ML, Garabedian M, Aris RM, Morton A, Hardin DS, Elkin SL, Compston JE, Conway SP, Castanet M, Wolfe S, Haworth CS (2011) European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros 10(Suppl 2):S16–23

    Article  PubMed  Google Scholar 

  23. Legroux-Gerot I, Leroy S, Prudhomme C, Perez T, Flipo RM, Wallaert B, Cortet B (2011) Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine 79:73–77

    Article  PubMed  Google Scholar 

  24. Rossini M, Del Marco A, Dal Santo F, Gatti D, Braggion C, James G, Adami S (2004) Prevalence and correlates of vertebral fractures in adults with cystic fibrosis. Bone 35:771–776

    Article  CAS  PubMed  Google Scholar 

  25. Tejero Garcia S, Giraldez Sanchez MA, Cejudo P, Quintana Gallego E, Dapena J, Garcia Jimenez R, Cano Luis P, Gomez de Terreros I (2011) Bone health, daily physical activity, and exercise tolerance in patients with cystic fibrosis. Chest 140:475–481

    Article  PubMed  Google Scholar 

  26. Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39:1173–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gore AP, Kwon SH, Stenbit AE (2010) A roadmap to the brittle bones of cystic fibrosis. J Osteoporos 2011:926045

    PubMed  PubMed Central  Google Scholar 

  28. Haworth CS (2010) Impact of cystic fibrosis on bone health. Curr Opin Pulm Med 16:616–622

    Article  CAS  PubMed  Google Scholar 

  29. Elkin SL, Fairney A, Burnett S, Kemp M, Kyd P, Burgess J, Compston JE, Hodson ME (2001) Vertebral deformities and low bone mineral density in adults with cystic fibrosis: a cross-sectional study. Osteoporos Int 12:366–372

    Article  CAS  PubMed  Google Scholar 

  30. Shead EF, Haworth CS, Gunn E, Bilton D, Scott MA, Compston JE (2006) Osteoclastogenesis during infective exacerbations in patients with cystic fibrosis. Am J Respir Crit Care Med 174:306–311

    Article  CAS  PubMed  Google Scholar 

  31. Alicandro G, Bisogno A, Battezzati A, Bianchi ML, Corti F, Colombo C (2014) Recurrent pulmonary exacerbations are associated with low fat free mass and low bone mineral density in young adults with cystic fibrosis. J Cyst Fibros 13:328–334

    Article  PubMed  Google Scholar 

  32. Velard F, Delion M, Le Henaff C, Guillaume C, Gangloff S, Jacquot J, Tabary O, Touqui L, Barthes F, Sermet-Gaudelus I (2014) Cystic fibrosis and bone disease: defective osteoblast maturation with the F508del mutation in cystic fibrosis transmembrane conductance regulator. Am J Respir Crit Care Med 189:746–748

    Article  PubMed  Google Scholar 

  33. Boyle MP (2006) Update on maintaining bone health in cystic fibrosis. Curr Opin Pulm Med 12:453–458

    Article  PubMed  Google Scholar 

  34. King SJ, Topliss DJ, Kotsimbos T, Nyulasi IB, Bailey M, Ebeling PR, Wilson JW (2005) Reduced bone density in cystic fibrosis: DeltaF508 mutation is an independent risk factor. Eur Respir J 25:54–61

    Article  CAS  PubMed  Google Scholar 

  35. Scheid P, Kempster L, Griesenbach U, Davies JC, Dewar A, Weber PP, Colledge WH, Evans MJ, Geddes DM, Alton EW (2001) Inflammation in cystic fibrosis airways: relationship to increased bacterial adherence. EurRespirJ 17:27–35

    CAS  Google Scholar 

  36. Elkin SL, Vedi S, Bord S, Garrahan NJ, Hodson ME, Compston JE (2002) Histomorphometric analysis of bone biopsies from the iliac crest of adults with cystic fibrosis. Am J Respir Crit Care Med 166:1470–1474

    Article  PubMed  Google Scholar 

  37. Putman MS, Milliren CE, Derrico N, Uluer A, Sicilian L, Lapey A, Sawicki G, Gordon CM, Bouxsein ML, Finkelstein JS (2014) Compromised bone microarchitecture and estimated bone strength in young adults with cystic fibrosis. J Clin Endocrinol Metab 99:3399–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Le Henaff C, Hay E, Velard F, Marty C, Tabary O, Marie PJ, Jacquot JP (2014) Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis. Am J Pathol 184:1132–1141

    Article  PubMed  CAS  Google Scholar 

  39. Stalvey MS, Clines KL, Havasi V, McKibbin CR, Dunn LK, Chung WJ, Clines GA (2013) Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS One 8:e80098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bonora M, Riffault L, Marie S, Mall M, Clement A, Tabary O (2011) Morphological analysis of the trachea and pattern of breathing in betaENaC-Tg mice. Respir Physiol Neurobiol 178:346–348

    Article  CAS  PubMed  Google Scholar 

  41. Bonvin E, Le Rouzic P, Bernaudin JF, Cottart CH, Vandebrouck C, Crie A, Leal T, Clement A, Bonora M (2008) Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator-deficient mice. J Physiol 586:3231–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meyerholz DK, Stoltz DA, Namati E, Ramachandran S, Pezzulo AA, Smith AR, Rector MV, Suter MJ, Kao S, McLennan G, Tearney GJ, Zabner J, McCray PB Jr, Welsh MJ (2010) Loss of cystic fibrosis transmembrane conductance regulator function produces abnormalities in tracheal development in neonatal pigs and young children. Am J Respir Crit Care Med 182:1251–1261

    Article  PubMed  PubMed Central  Google Scholar 

  43. Adam RJ, Michalski AS, Bauer C, Abou Alaiwa MH, Gross TJ, Awadalla MS, Bouzek DC, Gansemer ND, Taft PJ, Hoegger MJ, Diwakar A, Ochs M, Reinhardt JM, Hoffman EA, Beichel RR, Meyerholz DK, Stoltz DA (2013) Air trapping and airflow obstruction in newborn cystic fibrosis piglets. Am J Respir Crit Care Med 188:1434–1441

    Article  PubMed  PubMed Central  Google Scholar 

  44. Davies JC, Wainwright CE, Canny GJ, Chilvers MA, Howenstine MS, Munck A, Mainz JG, Rodriguez S, Li H, Yen K, Ordonez CL, Ahrens R (2013) Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med 187:1219–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, Colombo C, Davies JC, De Boeck K, Flume PA, Konstan MW, McColley SA, McCoy K, McKone EF, Munck A, Ratjen F, Rowe SM, Waltz D, Boyle MP (2015) Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med

  46. Baroncelli GI, De Luca F, Magazzu G, Arrigo T, Sferlazzas C, Catena C, Bertelloni S, Saggese G (1997) Bone demineralization in cystic fibrosis: evidence of imbalance between bone formation and degradation. Pediatr Res 41:397–403

    Article  CAS  PubMed  Google Scholar 

  47. Nicolaidou P, Stavrinadis I, Loukou I, Papadopoulou A, Georgouli H, Douros K, Priftis KN, Gourgiotis D, Matsinos YG, Doudounakis S (2006) The effect of vitamin K supplementation on biochemical markers of bone formation in children and adolescents with cystic fibrosis. Eur J Pediatr 165:540–545

    Article  CAS  PubMed  Google Scholar 

  48. Cohen-Cymberknoh M, Shoseyov D, Kerem E (2011) Managing cystic fibrosis: strategies that increase life expectancy and improve quality of life. Am J Respir Crit Care Med 183:1463–1471

    Article  PubMed  Google Scholar 

  49. Sermet-Gaudelus I, Castanet M, Retsch-Bogart G, Aris RM (2009) Update on cystic fibrosis-related bone disease: a special focus on children. Paediatr Respir Rev 10:134–142

    Article  PubMed  Google Scholar 

  50. Putman MS, Baker JF, Uluer A, Herlyn K, Lapey A, Sicilian L, Tillotson AP, Gordon CM, Merkel PA, Finkelstein JS (2015) Trends in bone mineral density in young adults with cystic fibrosis over a 15-year period. J Cyst Fibros

  51. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 29:535–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192

    Article  CAS  PubMed  Google Scholar 

  53. Festini F, Taccetti G, Repetto T, Reali MF, Campana S, Mergni G, Marianelli L, de Martino M (2005) Gestational and neonatal characteristics of children with cystic fibrosis: a cohort study. J Pediatr 147:316–320

    Article  PubMed  Google Scholar 

  54. Switzer M, Rice J, Rice M, Hardin DS (2009) Insulin-like growth factor-I levels predict weight, height and protein catabolism in children and adolescents with cystic fibrosis. J Pediatr Endocrinol Metab 22:417–424

    Article  CAS  PubMed  Google Scholar 

  55. Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS, Zabner J, Fredericks DC, McCray PB Jr, Welsh MJ, Stoltz DA (2010) Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc Natl Acad Sci U S A 107:20571–20575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Haworth CS, Freemont AJ, Webb AK, Dodd ME, Selby PL, Mawer EB, Adams JE (1999) Hip fracture and bone histomorphometry in a young adult with cystic fibrosis. Eur Respir J 14:478–479

    Article  CAS  PubMed  Google Scholar 

  57. Imai Y, Kondoh S, Kouzmenko A, Kato S (2011) Minireview: osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-alpha. Mol Endocrinol 24:877–885

    Article  CAS  Google Scholar 

  58. Chen H, Guo JH, Lu YC, Ding GL, Yu MK, Tsang LL, Fok KL, Liu XM, Zhang XH, Chung YW, Huang P, Huang H, Chan HC (2012) Impaired CFTR-dependent amplification of FSH-stimulated estrogen production in cystic fibrosis and PCOS. J Clin Endocrinol Metab 97:923–932

    Article  CAS  PubMed  Google Scholar 

  59. Gimenez A, Le Henaff C, Norez C, Guillaume C, Ravoninjatovo B, Laurent-Maquin D, Becq F, Jacquot J (2012) Deficit of osteoprotegerin release by osteoblasts from a patient with cystic fibrosis. Eur Respir J 39:780–781

    Article  CAS  Google Scholar 

  60. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  61. Pashuck TD, Franz SE, Altman MK, Wasserfall CH, Atkinson MA, Wronski TJ, Flotte TR, Stalvey MS (2009) Murine model for cystic fibrosis bone disease demonstrates osteopenia and sex-related differences in bone formation. Pediatr Res 65:311–316

    Article  PubMed  PubMed Central  Google Scholar 

  62. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O, Koller BH (1992) An animal model for cystic fibrosis made by gene targeting. Science 257:1083–1088

    Article  CAS  PubMed  Google Scholar 

  63. Dif F, Marty C, Baudoin C, de Vernejoul MC, Levi G (2004) Severe osteopenia in CFTR-null mice. Bone 35:595–603

    Article  CAS  PubMed  Google Scholar 

  64. Haston CK, Li W, Li A, Lafleur M, Henderson JE (2008) Persistent osteopenia in adult cystic fibrosis transmembrane conductance regulator-deficient mice. Am J Respir Crit Care Med 177:309–315

    Article  PubMed  Google Scholar 

  65. Le Henaff C, Gimenez A, Hay E, Marty C, Marie P, Jacquot J (2012) The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation. Am J Pathol 180:2068–2075

    Article  PubMed  CAS  Google Scholar 

  66. Pastores GM, Elstein D, Hrebicek M, Zimran A (2007) Effect of miglustat on bone disease in adults with type 1 Gaucher disease: a pooled analysis of three multinational, open-label studies. Clin Ther 29:1645–1654

    Article  CAS  PubMed  Google Scholar 

  67. Venier RE, Igdoura SA (2012) Miglustat as a therapeutic agent: prospects and caveats. J Med Genet 49:591–597

    Article  CAS  PubMed  Google Scholar 

  68. Galanaud D, Tourbah A, Lehericy S, Leveque N, Heron B, Billette de Villemeur T, Guffon N, Feillet F, Baumann N, Vanier MT, Sedel F (2009) 24 month-treatment with miglustat of three patients with Niemann-Pick disease type C: follow up using brain spectroscopy. Mol Genet Metab 96:55–58

    Article  CAS  PubMed  Google Scholar 

  69. Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick-Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI (2009) Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136:1136–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Napimoga MH, Demasi AP, Bossonaro JP, de Araujo VC, Clemente-Napimoga JT, Martinez EF (2013) Low doses of 15d-PGJ2 induce osteoblast activity in a PPAR-gamma independent manner. Int Immunopharmacol 16:131–138

    Article  CAS  PubMed  Google Scholar 

  71. Blackwell KA, Raisz LG, Pilbeam CC (2010) Prostaglandins in bone: bad cop, good cop? Trends Endocrinol Metab 21:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie C, Liang B, Xue M, Lin AS, Loiselle A, Schwarz EM, Guldberg RE, O’Keefe RJ, Zhang X (2009) Rescue of impaired fracture healing in COX-2−/− mice via activation of prostaglandin E2 receptor subtype 4. Am J Pathol 175:772–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Baudouin-Legros M, Colas J, Moriceau S, Kelly M, Planelles G, Edelman A, Ollero M (2012) Long-term CFTR inhibition modulates 15d-prostaglandin J2 in human pulmonary cells. Int J Biochem Cell Biol 44:1009–1018

    Article  CAS  PubMed  Google Scholar 

  74. Walker NM, Badri LN, Wadhwa A, Wettlaufer S, Peters-Golden M, Lama VN (2012) Prostaglandin E2 as an inhibitory modulator of fibrogenesis in human lung allografts. Am J Respir Crit Care Med 185:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  CAS  PubMed  Google Scholar 

  76. Diamond JM, Akimova T, Kazi A, Shah RJ, Cantu E, Feng R, Levine MH, Kawut SM, Meyer NJ, Lee JC, Hancock WW, Aplenc R, Ware LB, Palmer SM, Bhorade S, Lama VN, Weinacker A, Orens J, Wille K, Crespo M, Lederer DJ, Arcasoy S, Demissie E, Christie JD (2014) Genetic variation in the prostaglandin E2 pathway is associated with primary graft dysfunction. Am J Respir Crit Care Med 189:567–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maier NK, Leppla SH, Moayeri M (2015) The cyclopentenone prostaglandin 15d-PGJ2 inhibits the NLRP1 and NLRP3 inflammasomes. J Immunol 194:2776–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, Sengchanthalangsy LL, Ghosh G, Glass CK (2000) 15-deoxy-delta 12,14-prostaglandin J2 inhibits multiple steps in the NF-kappa B signaling pathway. Proc Natl Acad Sci U S A 97:4844–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS, Kim DD (2011) 15-Deoxy-delta(1)(2), (1)(4)-prostaglandin J(2), an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 82:1335–1351

    Article  CAS  PubMed  Google Scholar 

  80. Kim KR, Kim HJ, Lee SK, Ma GT, Park KK, Chung WY (2015) 15-Deoxy-delta12,14-prostaglandin j2 inhibits osteolytic breast cancer bone metastasis and estrogen deficiency-induced bone loss. PLoS One 10:e0122764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. During A, Penel G, Hardouin P (2015) Understanding the local actions of lipids in bone physiology. Prog Lipid Res

  82. Teichgraber V, Ulrich M, Endlich N, Riethmuller J, Wilker B, De Oliveira-Munding CC, van Heeckeren AM, Barr ML, von Kurthy G, Schmid KW, Weller M, Tummler B, Lang F, Grassme H, Doring G, Gulbins E (2008) Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat Med 14:382–391

    Article  PubMed  CAS  Google Scholar 

  83. Strandvik B (2010) Fatty acid metabolism in cystic fibrosis. Prostaglandins Leukot Essent Fatty Acids 83:121–129

    Article  CAS  PubMed  Google Scholar 

  84. Worgall TS, Veerappan A, Sung B, Kim BI, Weiner E, Bholah R, Silver RB, Jiang XC, Worgall S (2011) Impaired sphingolipid synthesis in the respiratory tract induces airway hyperreactivity. Sci Transl Med 5:186ra167

    Google Scholar 

  85. Xu Y, Krause A, Limberis M, Worgall TS, Worgall S (2011) Low sphingosine-1-phosphate impairs lung dendritic cells in cystic fibrosis. Am J Respir Cell Mol Biol 48:250–257

    Article  CAS  Google Scholar 

  86. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407

    Article  CAS  PubMed  Google Scholar 

  87. Petrie Aronin CE, Shin SJ, Naden KB, Rios PD Jr, Sefcik LS, Zawodny SR, Bagayoko ND, Cui Q, Khan Y, Botchwey EA (2010) The enhancement of bone allograft incorporation by the local delivery of the sphingosine 1-phosphate receptor targeted drug FTY720. Biomaterials 31:6417–6424

    Article  CAS  PubMed  Google Scholar 

  88. Ahn SH, Koh JM, Gong EJ, Byun S, Lee SY, Kim BJ, Lee SH, Chang JS, Kim GS (2013) Association of bone marrow sphingosine 1-phosphate levels with osteoporotic hip fractures. J Bone Metab 20:61–65

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kim BJ, Koh JM, Lee SY, Lee YS, Lee SH, Lim KH, Cho EH, Kim SW, Kim TH, Kim SY, Kim GS (2012) Plasma sphingosine 1-phosphate levels and the risk of vertebral fracture in postmenopausal women. J Clin Endocrinol Metab 97:3807–3814

    Article  CAS  PubMed  Google Scholar 

  90. Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, Kobayashi M, Hirofuji T, Hirata M, Maeda K (2013) Sphingosine-1-phosphate promotes the nuclear translocation of beta-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone 55:315–324

    Article  CAS  PubMed  Google Scholar 

  91. Malik FA, Meissner A, Semenkov I, Molinski S, Pasyk S, Ahmadi S, Bui HH, Bear CE, Lidington D, Bolz SS (2015) Sphingosine-1-phosphate is a novel regulator of cystic fibrosis transmembrane conductance regulator (CFTR) activity. PLoS One 10:e0130313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Meissner A, Yang J, Kroetsch JT, Sauve M, Dax H, Momen A, Noyan-Ashraf MH, Heximer S, Husain M, Lidington D, Bolz SS (2012) Tumor necrosis factor-alpha-mediated downregulation of the cystic fibrosis transmembrane conductance regulator drives pathological sphingosine-1-phosphate signaling in a mouse model of heart failure. Circulation 125:2739–2750

    Article  CAS  PubMed  Google Scholar 

  93. Lotinun S, Kiviranta R, Matsubara T, Alzate JA, Neff L, Luth A, Koskivirta I, Kleuser B, Vacher J, Vuorio E, Horne WC, Baron R (2013) Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation. J Clin Invest 123:666–681

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang JN, Zhao Y, Liu C, Han ES, Yu X, Lidington D, Bolz SS, You L (2015) The role of the sphingosine-1-phosphate signaling pathway in osteocyte mechanotransduction. Bone 79:71–78

    Article  CAS  PubMed  Google Scholar 

  95. Ferron M, Lacombe J (2014) Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys 561:137–146

    Article  CAS  PubMed  Google Scholar 

  96. Karsenty G, Oury F (2013) Regulation of male fertility by the bone-derived hormone osteocalcin. Mol Cell Endocrinol 382:521–526

    Article  PubMed  CAS  Google Scholar 

  97. Oury F, Ferron M, Huizhen W, Confavreux C, Xu L, Lacombe J, Srinivas P, Chamouni A, Lugani F, Lejeune H, Kumar TR, Plotton I, Karsenty G (2013) Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest 123:2421–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karsenty G, Ferron M (2012) The contribution of bone to whole-organism physiology. Nature 481:314–320

    Article  CAS  PubMed  Google Scholar 

  99. Lee NJ, Nguyen AD, Enriquez RF, Luzuriaga J, Bensellam M, Laybutt R, Baldock PA, Herzog H (2015) NPY signalling in early osteoblasts controls glucose homeostasis. Mol Metab 4:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105:5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rodriguez-Carballo E, Gamez B, Mendez-Lucas A, Sanchez-Freutrie M, Zorzano A, Bartrons R, Alcantara S, Perales JC, Ventura F (2015) p38alpha function in osteoblasts influences adipose tissue homeostasis. Faseb J 29:1414–1425

    Article  CAS  PubMed  Google Scholar 

  103. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Invest 124:1–13

    Article  PubMed  CAS  Google Scholar 

  104. Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A 73:1447–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lombardi G, Perego S, Luzi L, Banfi G (2014) A four-season molecule: osteocalcin. Updates in its physiological roles. Endocrine 48:394–404

    Article  PubMed  CAS  Google Scholar 

  106. Wei J, Karsenty G (2015) An overview of the metabolic functions of osteocalcin. Curr Osteoporos Rep 13:180–185

    Article  PubMed  Google Scholar 

  107. Confavreux CB, Borel O, Lee F, Vaz G, Guyard M, Fadat C, Carlier MC, Chapurlat R, Karsenty G (2012) Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int 23:1645–1650

    Article  CAS  PubMed  Google Scholar 

  108. Yeap BB, Alfonso H, Chubb SA, Gauci R, Byrnes E, Beilby JP, Ebeling PR, Handelsman DJ, Allan CA, Grossmann M, Norman PE, Flicker L (2015) Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab 100:63–71

    Article  CAS  PubMed  Google Scholar 

  109. Rana M, Munns CF, Selvadurai H, Briody J, Craig ME (2013) The impact of dysglycaemia on bone mineral accrual in young people with cystic fibrosis. Clin Endocrinol (Oxf) 78:36–42

    Article  CAS  Google Scholar 

  110. Gounarides JS, Korach-Andre M, Killary K, Argentieri G, Turner O, Laurent D (2008) Effect of dexamethasone on glucose tolerance and fat metabolism in a diet-induced obesity mouse model. Endocrinology 149:758–766

    Article  CAS  PubMed  Google Scholar 

  111. Weinstein RS (2011) Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med 365:62–70

    Article  CAS  PubMed  Google Scholar 

  112. Prummel MF, Wiersinga WM, Lips P, Sanders GT, Sauerwein HP (1991) The course of biochemical parameters of bone turnover during treatment with corticosteroids. J Clin Endocrinol Metab 72:382–386

    Article  CAS  PubMed  Google Scholar 

  113. Brennan-Speranza TC, Henneicke H, Gasparini SJ, Blankenstein KI, Heinevetter U, Cogger VC, Svistounov D, Zhang Y, Cooney GJ, Buttgereit F, Dunstan CR, Gundberg C, Zhou H, Seibel MJ (2012) Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest 122:4172–4189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Clowes JA, Riggs BL, Khosla S (2005) The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev 208:207–227

    Article  CAS  PubMed  Google Scholar 

  115. Hamilton EJ, Rakic V, Davis WA, Chubb SA, Kamber N, Prince RL, Davis TM (2009) Prevalence and predictors of osteopenia and osteoporosis in adults with type 1 diabetes. Diabet Med 26:45–52

    Article  CAS  PubMed  Google Scholar 

  116. Ziai S, Coriati A, Gauthier MS, Rabasa-Lhoret R, Richter MV (2014) Could T cells be involved in lung deterioration and hyperglycemia in cystic fibrosis? Diabetes Res Clin Pract 105:22–29

    Article  CAS  PubMed  Google Scholar 

  117. Mueller C, Braag SA, Keeler A, Hodges C, Drumm M, Flotte TR (2011) Lack of cystic fibrosis transmembrane conductance regulator in CD3+ lymphocytes leads to aberrant cytokine secretion and hyperinflammatory adaptive immune responses. Am J Respir Cell Mol Biol 44:922–929

    Article  CAS  PubMed  Google Scholar 

  118. Bruscia EM, Zhang PX, Satoh A, Caputo C, Medzhitov R, Shenoy A, Egan ME, Krause DS (2009) Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. J Immunol 186:6990–6998

    Article  CAS  Google Scholar 

  119. Xu Y, Tertilt C, Krause A, Quadri LE, Crystal RG, Worgall S (2009) Influence of the cystic fibrosis transmembrane conductance regulator on expression of lipid metabolism-related genes in dendritic cells. Respir Res 10:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Tesmer LA, Lundy SK, Sarkar S, Fox DA (2008) Th17 cells in human disease. Immunol Rev 223:87–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tan HL, Regamey N, Brown S, Bush A, Lloyd CM, Davies JC (2011) The Th17 pathway in cystic fibrosis lung disease. Am J Respir Crit Care Med 184:252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tiringer K, Treis A, Fucik P, Gona M, Gruber S, Renner S, Dehlink E, Nachbaur E, Horak F, Jaksch P, Doring G, Crameri R, Jung A, Rochat MK, Hormann M, Spittler A, Klepetko W, Akdis CA, Szepfalusi Z, Frischer T, Eiwegger T (2013) A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 187:621–629

    Article  CAS  PubMed  Google Scholar 

  123. Yuan FL, Li X, Lu WG, Zhao YQ, Li CW, Li JP, Sun JM, Xu RS (2012) Type 17 T-helper cells might be a promising therapeutic target for osteoporosis. Mol Biol Rep 39:771–774

    Article  CAS  PubMed  Google Scholar 

  124. Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS One 7:e44552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Haworth CS, Selby PL, Webb AK, Martin L, Elborn JS, Sharples LD, Adams JE (2004) Inflammatory related changes in bone mineral content in adults with cystic fibrosis. Thorax 59:613–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shead EF, Haworth CS, Barker H, Bilton D, Compston JE (2010) Osteoclast function, bone turnover and inflammatory cytokines during infective exacerbations of cystic fibrosis. J Cyst Fibros 9:93–98

    Article  CAS  PubMed  Google Scholar 

  127. Shmarina G, Pukhalsky A, Petrova N, Zakharova E, Avakian L, Kapranov N, Alioshkin V (2013) TNF gene polymorphisms in cystic fibrosis patients: contribution to the disease progression. J Transl Med 11:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li Y, Li A, Strait K, Zhang H, Nanes MS, Weitzmann MN (2007) Endogenous TNFalpha lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-kappaB. J Bone Miner Res 22:646–655

    Article  CAS  PubMed  Google Scholar 

  129. Ferguson JH, Chang AB (2012) Vitamin D supplementation for cystic fibrosis. Cochrane Database Syst Rev 4:CD007298

    Google Scholar 

  130. Bianchi ML, Colombo C, Assael BM, Dubini A, Lombardo M, Quattrucci S, Bella S, Collura M, Messore B, Raia V, Poli F, Bini R, Albanese CV, De Rose V, Costantini D, Romano G, Pustorino E, Magazzu G, Bertasi S, Lucidi V, Traverso G, Coruzzo A, Grzejdziak AD (2013) Treatment of low bone density in young people with cystic fibrosis: a multicentre, prospective, open-label observational study of calcium and calcifediol followed by a randomised placebo-controlled trial of alendronate. Lancet Respir Med 1:377–385

    Article  CAS  PubMed  Google Scholar 

  131. Hirao M, Hashimoto J, Ando W, Ono T, Yoshikawa H (2008) Response of serum carboxylated and undercarboxylated osteocalcin to alendronate monotherapy and combined therapy with vitamin K2 in postmenopausal women. J Bone Miner Metab 26:260–264

    Article  CAS  PubMed  Google Scholar 

  132. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  133. Body JJ, Gaich GA, Scheele WH, Kulkarni PM, Miller PD, Peretz A, Dore RK, Correa-Rotter R, Papaioannou A, Cumming DC, Hodsman AB (2002) A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 87:4528–4535

    Article  CAS  PubMed  Google Scholar 

  134. Siwamogsatham O, Stephens K, Tangpricha V (2014) Evaluation of teriparatide for treatment of osteoporosis in four patients with cystic fibrosis: a case series. Case Rep Endocrinol 2014:893589

    PubMed  PubMed Central  Google Scholar 

  135. Ikpa PT, Bijvelds MJ, de Jonge HR (2014) Cystic fibrosis: toward personalized therapies. Int J Biochem Cell Biol 52:192–200

    Article  CAS  PubMed  Google Scholar 

  136. Bell SC, De Boeck K, Amaral MD (2014) New pharmacological approaches for cystic fibrosis: promises, progress, pitfalls. Pharmacol Ther 145:19–34

    Article  PubMed  CAS  Google Scholar 

  137. Clancy JP, Jain M (2012) Personalized medicine in cystic fibrosis: dawning of a new era. Am J Respir Crit Care Med 186:593–597

    Article  CAS  PubMed  Google Scholar 

  138. Birault V, Solari R, Hanrahan J, Thomas DY (2013) Correctors of the basic trafficking defect of the mutant F508del-CFTR that causes cystic fibrosis. Curr Opin Chem Biol 17:353–360

    Article  CAS  PubMed  Google Scholar 

  139. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, Decker CJ, Miller M, McCartney J, Olson ER, Wine JJ, Frizzell RA, Ashlock M, Negulescu PA (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A 108:18843–18848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Molinski S, Eckford PD, Pasyk S, Ahmadi S, Chin S, Bear CE (2012) Functional rescue of F508del-CFTR using small molecule correctors. Front Pharmacol 3:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Eckford PD, Ramjeesingh M, Molinski S, Pasyk S, Dekkers JF, Li C, Ahmadi S, Ip W, Chung TE, Du K, Yeger H, Beekman J, Gonska T, Bear CE (2014) VX-809 and related corrector compounds exhibit secondary activity stabilizing active F508del-CFTR after its partial rescue to the cell surface. Chem Biol

  142. He L, Kota P, Aleksandrov AA, Cui L, Jensen T, Dokholyan NV, Riordan JR (2013) Correctors of DeltaF508 CFTR restore global conformational maturation without thermally stabilizing the mutant protein. Faseb J 27:536–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Velard F, Delion M, Lemaire F, Tabary O, Guillaume C, Le Pimpec Barthes F, Touqui L, Gangloff S, Sermet-Gaudelus I, Jacquot J (2015) Cystic fibrosis bone disease: is the CFTR corrector C18 an option for therapy? Eur Respir J 45:845–848

    Article  CAS  PubMed  Google Scholar 

  144. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Drevinek P, Griese M, McKone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordonez C, Elborn JS (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interests

None.

Support statement

This study was supported in part by funds from the French Cystic Fibrosis Association Vaincre la Mucoviscidose (RF20150501235 to J. Jacquot). M. Delion is a PhD scholarship recipient from the Ministère de l’Enseignement Supérieur et de la Recherche, Paris, France

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jacquot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacquot, J., Delion, M., Gangloff, S. et al. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int 27, 1401–1412 (2016). https://doi.org/10.1007/s00198-015-3343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3343-3

Keywords

Navigation