Skip to main content

Advertisement

Log in

Serum chitotriosidase in postmenopausal women with severe osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

An Erratum to this article was published on 19 January 2016

Abstract

Summary

Human chitotriosidase (Chit) increases during the osteoclast differentiation and their activity. We demonstrated that serum Chit was significantly higher in osteoporotic subjects than in healthy control ones and revealed a negative correlation between Chit and bone mineral density (BMD). This is the first study showing a correlation between Chit and severe postmenopausal osteoporosis.

Introduction

Mammalian chitinases exert important biological roles in the monocyte lineage and chronic inflammatory diseases. In particular, Chit seems to promote bone resorption in vitro. No in vivo studies have been performed to confirm this finding. We aim to evaluate Chit activity in postmenopausal women affected by severe osteoporosis.

Methods

In this cross-sectional study, 91 postmenopausal women affected by osteoporosis and 61 with either osteopenia or normal BMD were screened. All subjects were assessed by dual-energy X-ray absorptiometry (DXA) and X-ray vertebral morphometry. Osteoporotic subjects were considered eligible if they were affected by at least one vertebral osteoporotic fracture (group A = 57 subjects). Osteopenic or healthy subjects were free from osteoporotic fractures (group B = 51 subjects). Enzymatic Chit and serum β-CrossLaps (CTX) were measured in the whole population.

Results

Group A showed higher serum levels of beta-CTX compared to group B (0.40 ± 0.26 ng/mL vs 0.29 ± 0.2 ng/mL, p = 0.022). Chit was significantly higher in group A than in group B (1042 ± 613 nmol/mL/h vs 472 ± 313 nmol/mL/h, p < 0.001, respectively) even after adjustment for age (p < 0.001). Spearman correlation test revealed a negative correlation between Chit and BMD at each site (lumbar spine: r = −0.38, p = 0.001, femoral neck: r = −0.35, p = 0.001, total femur: r = −0.39, p < 0.001). Furthermore, a positive correlation between Chit and PTH was observed (r = 0.26, p = 0.013). No significant correlation was found between Chit and beta-CTX (r = 0.12, p = 0.229). After a multivariate analysis, a positive correlation between severe osteoporosis and Chit (p < 0.001), beta-CTX (p = 0.013), and age (p < 0.001) was observed.

Conclusion

This is the first clinical study showing a correlation between Chit and severe postmenopausal osteoporosis. Larger and prospective studies are needed to evaluate if Chit may be a promising clinical biomarker and/or therapeutic monitor in subjects with osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hlaing TT, Compston JE (2014) Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem 51:189–202. doi:10.1177/0004563213515190

    Article  PubMed  Google Scholar 

  2. Garnero P (2014) New developments in biological markers of bone metabolism in osteoporosis. Bone 66:46–55. doi:10.1016/j.bone.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  3. Palermo A, Strollo R, Maddaloni E, Tuccinardi D, D’Onofrio L, Briganti SI, Defeudis G, De Pascalis M, Lazzaro MC, Colleluori G, Manfrini S, Pozzilli P, Napoli N (2014) Irisin is associated with osteoporotic fractures independently of bone mineral density, body composition or daily physical activity. Clin Endocrinol (Oxf). doi:10.1111/cen.12672

  4. Boot RG, Blommaart EF, Swart E, Ghauharali-van der Vlugt K, Bijl N, Moe C, Place A, Aerts JM (2001) Identification of a novel acidic mammalian chitinase distinct from chitotriosidase. J Biol Chem 276:6770–6778. doi:10.1074/jbc.M009886200

  5. Van Eijk M, Voorn-Brouwer T, Scheij SS, Verhoeven AJ, Boot RG, Aerts JM (2010) Curdlan-mediated regulation of human phagocyte-specific chitotriosidase. FEBS Lett 584:3165–3169. doi:10.1016/j.febslet.2010.06.001

  6. Guan S-P, Mok Y-K, Koo K-N, Chu KL, Wong WS (2009) Chitinases: biomarkers for human diseases. Protein Pept Lett 16:490–498

  7. Di Rosa M, Tibullo D, Vecchio M, Nunnari G, Saccone S, Di Raimondo F, Malaguarnera L (2014) Determination of chitinases family during osteoclastogenesis. Bone 61:55–63. doi:10.1016/j.bone.2014.01.005

  8. Hollak CE, van Weely S, van Oers MH, Aerts JM (1994) Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest 93:1288–1292. doi:10.1172/JCI117084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Orchard PJ, Lund T, Miller W, Rothman SM, Raymond G, Nascene D, Basso L, Cloyd J, Tolar J (2011) Chitotriosidase as a biomarker of cerebral adrenoleukodystrophy. J Neuroinflammation 8:144. doi:10.1186/1742-2094-8-144

  10. Van Eijk M, van Roomen CPAA, Renkema GH, Bussink AP, Andrews L, Blommaart EF, Sugar A, Verhoeven AJ, Boot RG, Aerts JM (2005) Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol 17:1505–1512. doi:10.1093/intimm/dxh328

  11. Young E, Chatterton C, Vellodi A, Winchester B (1997) Plasma chitotriosidase activity in Gaucher disease patients who have been treated either by bone marrow transplantation or by enzyme replacement therapy with alglucerase. J Inherit Metab Dis 20:595–602

    Article  CAS  PubMed  Google Scholar 

  12. Ries M, Schaefer E, Lührs T, Mani L, Kuhn J, Vanier MT, Krummenauer F, Gal A, Beck M, Mengel E (2006) Critical assessment of chitotriosidase analysis in the rational laboratory diagnosis of children with Gaucher disease and Niemann-Pick disease type A/B and C. J Inherit Metab Dis 29:647–652. doi:10.1007/s10545-006-0363-3

  13. Boot RG, Hollak CEM, Verhoek M, Alberts C, Jonkers RE, Aerts JM (2010) Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta 411:31–36. doi:10.1016/j.cca.2009.09.034

  14. Kzhyshkowska J, Gratchev A, Goerdt S (2007) Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark Insights 2:128–146

    PubMed Central  PubMed  Google Scholar 

  15. Pagliardini V, Pagliardini S, Corrado L, Lucenti A, Panigati L, Bersano E, Servo S, Cantello R, D’Alfonso S, Mazzini L (2014) Chitotriosidase and lysosomal enzymes as potential biomarkers of disease progression in amyotrophic lateral sclerosis: a survey clinic-based study. J Neurol Sci. doi:10.1016/j.jns.2014.12.016

  16. Cho SJ, Weiden MD, Lee CG (2015) Chitotriosidase in the pathogenesis of inflammation, interstitial lung diseases and COPD. Allergy Asthma Immunol Res 7:14–21. doi:10.4168/aair.2015.7.1.14

    Article  PubMed Central  PubMed  Google Scholar 

  17. Elmonem MA, Makar SH, van den Heuvel L, Abdelaziz H, Abdelrahman SM, Bossuyt X, Janssen MC, Cornelissen EA, Lefeber DJ, Joosten LA, Nabhan MM, Arcolino FO, Hassan FA, Gaide Chevronnay HP, Soliman NA, Levtchenko E (2014) Clinical utility of chitotriosidase enzyme activity in nephropathic cystinosis. Orphanet J Rare Dis 9:155. doi:10.1186/s13023-014-0155-z

  18. Vedder AC, Cox-Brinkman J, Hollak CE, Linthorst GE, Groener JE, Helmond MT, Scheij S, Aerts JM (2006) Plasma chitotriosidase in male Fabry patients: a marker for monitoring lipid-laden macrophages and their correction by enzyme replacement therapy. Mol Genet Metab 89:239–244. doi:10.1016/j.ymgme.2006.04.013

  19. Chang MK, Raggatt L-J, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181:1232–1244

  20. Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M, Alman BA (2014) Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. doi:10.1002/jbmr.2422

  21. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E,Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176

  22. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E,Morinaga T, Higashio K (1998) Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 139:1329–1337. doi:10.1210/endo.139.3.5837

  23. Cho SW, Soki FN, Koh AJ, Eber MR, Entezami P, Park SI, van Rooijen N, McCauley LK (2014) Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natl Acad Sci U S A 111:1545–1550. doi:10.1073/pnas.1315153111

  24. Boot RG, Renkema GH, Verhoek M, Strijland A, Bliek J, de Meulemeester TM, Mannens MM, Aerts JM (1998) The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem 273:25680–25685

Download references

Acknowledgments

We thank Mrs. Cinzia Antonacci, Department of Laboratory medicine, Campus Biomedico of Rome, for her assistance in laboratory work and Prof. Salvatore Musumeci, Institute of Biomolecular Chemistry, National Research Council (CNR), Catania, Italy, for his useful help in the discussion.

Conflict of interests

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palermo.

Additional information

M. Musumeci, A. Palermo, V. Denaro and S. Manfrini contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musumeci, M., Palermo, A., D’Onofrio, L. et al. Serum chitotriosidase in postmenopausal women with severe osteoporosis. Osteoporos Int 27, 711–716 (2016). https://doi.org/10.1007/s00198-015-3254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3254-3

Keywords

Navigation