Skip to main content

Advertisement

Log in

Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Fracture risk is higher in older adults with type 2 diabetes and may be influenced by treatments for diabetes. Oral anti-diabetic drugs have different effects on bone metabolism. The purpose of this review is to describe the effects of these drugs on bone metabolism and fracture risk. Osteoporosis is a progressive skeletal disorder that is characterized by compromised bone strength and increased risk of fracture. This condition has become an important global health problem, affecting approximately 200 million people worldwide. Another chronic and highly prevalent condition is diabetes mellitus, which affects more than 380 million people; both type 1 and type 2 diabetes are risk factors for fracture. Type 2 diabetes, in particular, is associated with impaired bone strength, although it is characterized by normal or elevated bone mineral density. Several therapeutic strategies are available to achieve the best outcomes in the management of diabetes mellitus but these have different effects on bone metabolism. The purpose of this narrative review is to describe the effects of oral hypoglycemic agents (metformin, sulfonylureas, thiazolidinediones, meglitinides, dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists and sodium-dependent glucose transporter 2 inhibitors) on bone metabolism and on the risk of developing fragility fractures in patients with type 2 diabetes. Both diabetes and osteoporosis represent a significant burden in terms of healthcare costs and quality of life. It is very important to choose therapies for diabetes that ensure good metabolic control whilst preserving skeletal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. IDF (2013) IDF Diabetes Atlas, 6th edn

  2. Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the european union: medical management, epidemiology and economic burden. A report prepared in collaboration with the international osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA). Arch Osteoporos 8:136. doi:10.1007/s11657-013-0136-1

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444. doi:10.1007/s00198-006-0253-4

    CAS  PubMed  Google Scholar 

  4. Ma L, Oei L, Jiang L et al (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27:319–332. doi:10.1007/s10654-012-9674-x

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505. doi:10.1093/aje/kwm106

    PubMed  Google Scholar 

  6. Burghardt AJ, Issever AS, Schwartz AV et al (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95:5045–5055. doi:10.1210/jc.2010-0226

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Farr JN, Drake MT, Amin S et al (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29:787–795. doi:10.1002/jbmr.2106

    PubMed Central  PubMed  Google Scholar 

  8. Giangregorio LM, Leslie WD, Lix LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27:301–308. doi:10.1002/jbmr.556

    PubMed  Google Scholar 

  9. Schwartz AV, Garnero P, Hillier TA et al (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386. doi:10.1210/jc.2008-2498

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Forsén L, Meyer HE, Midthjell K, Edna TH (1999) Diabetes mellitus and the incidence of hip fracture: results from the Nord-Trøndelag Health Survey. Diabetologia 42:920–925. doi:10.1007/s001250051248

    PubMed  Google Scholar 

  11. De Liefde II, van der Klift M, de Laet CEDH et al (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16:1713–1720. doi:10.1007/s00198-005-1909-1

    PubMed  Google Scholar 

  12. Patel S, Hyer S, Tweed K et al (2008) Risk factors for fractures and falls in older women with type 2 diabetes mellitus. Calcif Tissue Int 82:87–91. doi:10.1007/s00223-007-9082-5

    CAS  PubMed  Google Scholar 

  13. Oei L, Zillikens MC, Dehghan A et al (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam study. Diabetes Care 36:1619–1628. doi:10.2337/dc12-1188

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Kim JH, Choi HJ, Ku EJ, et al (2014) Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab jc20142047. doi: 10.1210/jc.2014-2047

  15. Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57. doi:10.1007/s00198-012-2074-y

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62:e1–e34. doi:10.1016/j.jclinepi.2009.06.006

    PubMed  Google Scholar 

  17. Cortizo AM, Sedlinsky C, McCarthy AD et al (2006) Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 536:38–46. doi:10.1016/j.ejphar.2006.02.030

    CAS  PubMed  Google Scholar 

  18. Kanazawa I, Yamaguchi T, Yano S et al (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419. doi:10.1016/j.bbrc.2008.08.034

    CAS  PubMed  Google Scholar 

  19. Jang WG, Kim EJ, Bae I-H et al (2011) Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone 48:885–893. doi:10.1016/j.bone.2010.12.003

    CAS  PubMed  Google Scholar 

  20. Zhen D, Chen Y, Tang X (2010) Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complicat 24:334–344. doi:10.1016/j.jdiacomp.2009.05.002

    PubMed  Google Scholar 

  21. Molinuevo MS, Schurman L, McCarthy AD et al (2010) Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 25:211–221. doi:10.1359/jbmr.090732

    CAS  PubMed  Google Scholar 

  22. Schurman L, McCarthy AD, Sedlinsky C et al (2008) Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 116:333–340. doi:10.1055/s-2007-992786

    CAS  PubMed  Google Scholar 

  23. Gao Y, Li Y, Xue J et al (2010) Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 635:231–236. doi:10.1016/j.ejphar.2010.02.051

    CAS  PubMed  Google Scholar 

  24. Sedlinsky C, Molinuevo MS, Cortizo AM et al (2011) Metformin prevents anti-osteogenic in vivo and ex vivo effects of rosiglitazone in rats. Eur J Pharmacol 668:477–485. doi:10.1016/j.ejphar.2011.07.033

    CAS  PubMed  Google Scholar 

  25. Wang C, Li H, Chen S-G et al (2012) The skeletal effects of thiazolidinedione and metformin on insulin-resistant mice. J Bone Miner Metab 30:630–637. doi:10.1007/s00774-012-0374-0

    CAS  PubMed  Google Scholar 

  26. Tolosa MJ, Chuguransky SR, Sedlinsky C et al (2013) Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract 101:177–186. doi:10.1016/j.diabres.2013.05.016

    CAS  PubMed  Google Scholar 

  27. Kasai T, Bandow K, Suzuki H et al (2009) Osteoblast differentiation is functionally associated with decreased AMP kinase activity. J Cell Physiol 221:740–749. doi:10.1002/jcp.21917

    CAS  PubMed  Google Scholar 

  28. Salai M, Somjen D, Gigi R et al (2013) Effects of commonly used medications on bone tissue mineralisation in SaOS-2 human bone cell line: an in vitro study. Bone Joint J 95-B:1575–1580. doi:10.1302/0301-620X.95B11.31158

    CAS  PubMed  Google Scholar 

  29. Mai Q-G, Zhang Z-M, Xu S et al (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909. doi:10.1002/jcb.23206

    CAS  PubMed  Google Scholar 

  30. Liu L, Zhang C, Hu Y, Peng B (2012) Protective effect of metformin on periapical lesions in rats by decreasing the ratio of receptor activator of nuclear factor kappa B ligand/osteoprotegerin. J Endod 38:943–947. doi:10.1016/j.joen.2012.03.010

    PubMed  Google Scholar 

  31. Wu W, Ye Z, Zhou Y, Tan W-S (2011) AICAR, a small chemical molecule, primes osteogenic differentiation of adult mesenchymal stem cells. Int J Artif Organs 34:1128–1136. doi:10.5301/ijao.5000007

    CAS  PubMed  Google Scholar 

  32. Patel JJ, Butters OR, Arnett TR (2014) PPAR agonists stimulate adipogenesis at the expense of osteoblast differentiation while inhibiting osteoclast formation and activity. Cell Biochem Funct. doi:10.1002/cbf.3025

    PubMed  Google Scholar 

  33. Jeyabalan J, Viollet B, Smitham P et al (2013) The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing. Osteoporos Int 24:2659–2670. doi:10.1007/s00198-013-2371-0

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Zinman B, Haffner SM, Herman WH et al (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134–142. doi:10.1210/jc.2009-0572

    CAS  PubMed  Google Scholar 

  35. Van Lierop AH, Hamdy NAT, van der Meer RW et al (2012) Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur J Endocrinol 166:711–6. doi:10.1530/EJE-11-1061

    PubMed  Google Scholar 

  36. Hegazy SK (2014) Evaluation of the anti-osteoporotic effects of metformin and sitagliptin in postmenopausal diabetic women. J Bone Miner Metab. doi:10.1007/s00774-014-0581-y

    PubMed  Google Scholar 

  37. Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299. doi:10.1007/s00125-005-1786-3

    CAS  PubMed  Google Scholar 

  38. Melton LJ, Leibson CL, Achenbach SJ et al (2008) Fracture risk in type 2 diabetes: update of a population-based study. J Bone Miner Res 23:1334–1342. doi:10.1359/jbmr.080323

    PubMed Central  PubMed  Google Scholar 

  39. Solomon DH, Cadarette SM, Choudhry NK et al (2009) A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab 94:2792–2798. doi:10.1210/jc.2008-2157

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T (2010) Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab 28:554–560. doi:10.1007/s00774-010-0160-9

    CAS  PubMed  Google Scholar 

  41. Colhoun HM, Livingstone SJ, Looker HC et al (2012) Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia 55:2929–2937. doi:10.1007/s00125-012-2668-0

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Monami M, Cresci B, Colombini A et al (2008) Bone fractures and hypoglycemic treatment in type 2 diabetic patients: a case–control study. Diabetes Care 31:199–203. doi:10.2337/dc07-1736

    PubMed  Google Scholar 

  43. Napoli N, Strotmeyer ES, Ensrud KE et al (2014) Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57:2057–2065. doi:10.1007/s00125-014-3289-6

    CAS  PubMed Central  PubMed  Google Scholar 

  44. TODAY Study Group (2013) Treatment effects on measures of body composition in the TODAY clinical trial. Diabetes Care 36:1742–1748. doi:10.2337/dc12-2534

    PubMed Central  Google Scholar 

  45. Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–43. doi:10.1056/NEJMoa066224

    CAS  PubMed  Google Scholar 

  46. Kahn SE, Zinman B, Lachin JM et al (2008) Rosiglitazone-associated fractures in type 2 diabetes: an analysis from A diabetes outcome progression trial (ADOPT). Diabetes Care 31:845–851. doi:10.2337/dc07-2270

    CAS  PubMed  Google Scholar 

  47. Monami M, Dicembrini I, Kundisova L et al (2014) A meta-analysis of the hypoglycemic risk in randomized controlled trials with sulphonylureas in patients with type 2 diabetes. Diabetes Obes Metab. doi:10.1111/dom.12287

    Google Scholar 

  48. Johnston SS, Conner C, Aagren M et al (2012) Association between hypoglycaemic events and fall-related fractures in medicare-covered patients with type 2 diabetes. Diabetes Obes Metab 14:634–643. doi:10.1111/j.1463-1326.2012.01583.x

    CAS  PubMed  Google Scholar 

  49. Ma P, Gu B, Ma J et al (2010) Glimepiride induces proliferation and differentiation of rat osteoblasts via the PI3-kinase/Akt pathway. Metabolism 59:359–366. doi:10.1016/j.metabol.2009.08.003

    CAS  PubMed  Google Scholar 

  50. Ma P, Xiong W, Liu H et al (2011) Extrapancreatic roles of glimepiride on osteoblasts from rat manibular bone in vitro: regulation of cytodifferentiation through PI3-kinases/Akt signalling pathway. Arch Oral Biol 56:307–316. doi:10.1016/j.archoralbio.2010.10.009

    CAS  PubMed  Google Scholar 

  51. Fronczek-Sokół J, Pytlik M (2014) Effect of glimepiride on the skeletal system of ovariectomized and non-ovariectomized rats. Pharmacol Rep 66:412–417. doi:10.1016/j.pharep.2013.12.013

    PubMed  Google Scholar 

  52. Dormuth CR, Carney G, Carleton B et al (2009) Thiazolidinediones and fractures in men and women. Arch Intern Med 169:1395–1402. doi:10.1001/archinternmed.2009.214

    CAS  PubMed  Google Scholar 

  53. Douglas IJ, Evans SJ, Pocock S, Smeeth L (2009) The risk of fractures associated with thiazolidinediones: a self-controlled case-series study. PLoS Med 6:e1000154. doi:10.1371/journal.pmed.1000154

    PubMed Central  PubMed  Google Scholar 

  54. Feige JN, Gelman L, Michalik L et al (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120–159. doi:10.1016/j.plipres.2005.12.002

    CAS  PubMed  Google Scholar 

  55. Willson TM, Brown PJ, Sternbach DD, Henke BR (2000) The PPARs: from orphan receptors to drug discovery. J Med Chem 43:527–550

    CAS  PubMed  Google Scholar 

  56. Michalik L, Auwerx J, Berger JP et al (2006) International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741. doi:10.1124/pr.58.4.5

    CAS  PubMed  Google Scholar 

  57. Ahmadian M, Suh JM, Hah N et al (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566. doi:10.1038/nm.3159

    CAS  PubMed  Google Scholar 

  58. Shockley KR, Lazarenko OP, Czernik PJ et al (2009) PPARgamma2 nuclear receptor controls multiple regulatory pathways of osteoblast differentiation from marrow mesenchymal stem cells. J Cell Biochem 106:232–246. doi:10.1002/jcb.21994

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Johnson TE, Vogel R, Rutledge SJ et al (1999) Thiazolidinedione effects on glucocorticoid receptor-mediated gene transcription and differentiation in osteoblastic cells. Endocrinology 140:3245–3254. doi:10.1210/endo.140.7.6797

    CAS  PubMed  Google Scholar 

  60. Suzawa M, Takada I, Yanagisawa J et al (2003) Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 5:224–230. doi:10.1038/ncb942

    CAS  PubMed  Google Scholar 

  61. Akune T, Ohba S, Kamekura S et al (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855. doi:10.1172/JCI19900

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Cho E-S, Kim M-K, Son Y-O et al (2012) The effects of rosiglitazone on osteoblastic differentiation, osteoclast formation and bone resorption. Mol Cell 33:173–181. doi:10.1007/s10059-012-2240-z

    CAS  Google Scholar 

  63. Rzonca SO, Suva LJ, Gaddy D et al (2004) Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology 145:401–406. doi:10.1210/en.2003-0746

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Ali AA, Weinstein RS, Stewart SA et al (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226–1235. doi:10.1210/en.2004-0735

    CAS  PubMed  Google Scholar 

  65. Wang L, Li L, Gao H, Li Y (2012) Effect of pioglitazone on transdifferentiation of preosteoblasts from rat bone mesenchymal stem cells into adipocytes. J Huazhong Univ Sci Technolog Med Sci 32:530–533. doi:10.1007/s11596-012-0091-x

    CAS  PubMed  Google Scholar 

  66. Seth A, Sy V, Pareek A et al (2013) Thiazolidinediones (TZDs) affect osteoblast viability and biomarkers independently of the TZD effects on aromatase. Horm Metab Res 45:1–8. doi:10.1055/s-0032-1321874

    CAS  PubMed  Google Scholar 

  67. Liu L, Aronson J, Lecka-Czernik B (2013) Rosiglitazone disrupts endosteal bone formation during distraction osteogenesis by local adipocytic infiltration. Bone 52:247–258. doi:10.1016/j.bone.2012.09.038

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sardone LD, Renlund R, Willett TL et al (2011) Effect of rosiglitazone on bone quality in a rat model of insulin resistance and osteoporosis. Diabetes 60:3271–3278. doi:10.2337/db10-1672

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Sorocéanu MA, Miao D, Bai X-Y et al (2004) Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol 183:203–216. doi:10.1677/joe.1.05723

    PubMed  Google Scholar 

  70. Lazarenko OP, Rzonca SO, Hogue WR et al (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680. doi:10.1210/en.2006-1587

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Gallagher EJ, Sun H, Kornhauser C et al (2014) The effect of dipeptidyl peptidase-IV inhibition on bone in a mouse model of type 2 diabetes. Diabetes Metab Res Rev 30:191–200. doi:10.1002/dmrr.2466

    CAS  PubMed  Google Scholar 

  72. Beck GR, Khazai NB, Bouloux GF et al (2013) The effects of thiazolidinediones on human bone marrow stromal cell differentiation in vitro and in thiazolidinedione-treated patients with type 2 diabetes. Transl Res 161:145–155. doi:10.1016/j.trsl.2012.08.006

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Benvenuti S, Cellai I, Luciani P et al (2007) Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J Endocrinol Invest 30:RC26–RC30

    CAS  PubMed  Google Scholar 

  74. Gustafson B, Eliasson B, Smith U (2010) Thiazolidinediones increase the wingless-type MMTV integration site family (WNT) inhibitor Dickkopf-1 in adipocytes: a link with osteogenesis. Diabetologia 53:536–540. doi:10.1007/s00125-009-1615-1

    CAS  PubMed  Google Scholar 

  75. Mieczkowska A, Baslé MF, Chappard D, Mabilleau G (2012) Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J Biol Chem 287:23517–23526. doi:10.1074/jbc.M111.324814

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Mabilleau G, Mieczkowska A, Edmonds ME (2010) Thiazolidinediones induce osteocyte apoptosis and increase sclerostin expression. Diabet Med 27:925–932. doi:10.1111/j.1464-5491.2010.03048.x

    CAS  PubMed  Google Scholar 

  77. Dutchak PA, Katafuchi T, Bookout AL et al (2012) Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell 148:556–567. doi:10.1016/j.cell.2011.11.062

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Yakar S, Courtland H-W, Clemmons D (2010) IGF-1 and bone: new discoveries from mouse models. J Bone Miner Res 25:2543–2552. doi:10.1002/jbmr.234

    PubMed Central  PubMed  Google Scholar 

  79. Lecka-Czernik B, Ackert-Bicknell C, Adamo ML et al (2007) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by rosiglitazone suppresses components of the insulin-like growth factor regulatory system in vitro and in vivo. Endocrinology 148:903–911. doi:10.1210/en.2006-1121

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Tsirella E, Mavrakanas T, Rager O et al (2012) Low dose pioglitazone does not affect bone formation and resorption markers or bone mineral density in streptozocin-induced diabetic rats. J Physiol Pharmacol 63:201–204

    CAS  PubMed  Google Scholar 

  81. Wan Y, Chong L-W, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 13:1496–1503. doi:10.1038/nm1672

    CAS  PubMed  Google Scholar 

  82. Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329–337. doi:10.1007/s00223-004-0224-8

    CAS  PubMed  Google Scholar 

  83. Syversen U, Stunes AK, Gustafsson BI et al (2009) Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)alpha agonist fenofibrate and the PPARgamma agonist pioglitazone. BMC Endocr Disord 9:10. doi:10.1186/1472-6823-9-10

    PubMed Central  PubMed  Google Scholar 

  84. Krause U, Harris S, Green A et al (2010) Pharmaceutical modulation of canonical Wnt signaling in multipotent stromal cells for improved osteoinductive therapy. Proc Natl Acad Sci U S A 107:4147–4152. doi:10.1073/pnas.0914360107

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Rubin GL, Zhao Y, Kalus AM, Simpson ER (2000) Peroxisome proliferator-activated receptor gamma ligands inhibit estrogen biosynthesis in human breast adipose tissue: possible implications for breast cancer therapy. Cancer Res 60:1604–1608

    CAS  PubMed  Google Scholar 

  86. Seto-Young D, Paliou M, Schlosser J et al (2005) Direct thiazolidinedione action in the human ovary: insulin-independent and insulin-sensitizing effects on steroidogenesis and insulin-like growth factor binding protein-1 production. J Clin Endocrinol Metab 90:6099–6105. doi:10.1210/jc.2005-0469

    CAS  PubMed  Google Scholar 

  87. Seto-Young D, Avtanski D, Parikh G et al (2011) Rosiglitazone and pioglitazone inhibit estrogen synthesis in human granulosa cells by interfering with androgen binding to aromatase. Horm Metab Res 43:250–256. doi:10.1055/s-0030-1270525

    CAS  PubMed  Google Scholar 

  88. Grey A, Bolland M, Gamble G et al (2007) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310. doi:10.1210/jc.2006-2646

    CAS  PubMed  Google Scholar 

  89. Harsløf T, Wamberg L, Møller L et al (2011) Rosiglitazone decreases bone mass and bone marrow fat. J Clin Endocrinol Metab 96:1541–1548. doi:10.1210/jc.2010-2077

    PubMed  Google Scholar 

  90. Berberoglu Z, Yazici AC, Demirag NG (2010) Effects of rosiglitazone on bone mineral density and remodelling parameters in Postmenopausal diabetic women: a 2-year follow-up study. Clin Endocrinol (Oxf) 73:305–312. doi:10.1111/j.1365-2265.2010.03784.x

    CAS  Google Scholar 

  91. Berberoglu Z, Gursoy A, Bayraktar N et al (2007) Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 92:3523–3530. doi:10.1210/jc.2007-0431

    CAS  PubMed  Google Scholar 

  92. Gruntmanis U, Fordan S, Ghayee HK et al (2010) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone increases bone resorption in women with type 2 diabetes: a randomized, controlled trial. Calcif Tissue Int 86:343–349. doi:10.1007/s00223-010-9352-5

    CAS  PubMed  Google Scholar 

  93. Bilezikian JP, Josse RG, Eastell R et al (2013) Rosiglitazone decreases bone mineral density and increases bone turnover in postmenopausal women with type 2 diabetes mellitus. J Clin Endocrinol Metab 98:1519–1528. doi:10.1210/jc.2012-4018

    CAS  PubMed  Google Scholar 

  94. Xiao W-H, Wang Y-R, Hou W-F et al (2013) The effects of pioglitazone on biochemical markers of bone turnover in the patients with type 2 diabetes. Int J Endocrinol 2013:290734. doi:10.1155/2013/290734

    PubMed Central  PubMed  Google Scholar 

  95. Kanazawa I, Yamaguchi T, Yano S et al (2010) Baseline atherosclerosis parameter could assess the risk of bone loss during pioglitazone treatment in type 2 diabetes mellitus. Osteoporos Int 21:2013–2018. doi:10.1007/s00198-009-1161-1

    CAS  PubMed  Google Scholar 

  96. Glintborg D, Andersen M, Hagen C et al (2008) Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab 93:1696–1701. doi:10.1210/jc.2007-2249

    CAS  PubMed  Google Scholar 

  97. Li H, Cui R, Cai H et al (2010) The effect of thiazolidinediones on bone mineral density in Chinese older patients with type 2 diabetes. J Bone Miner Metab 28:77–81. doi:10.1007/s00774-009-0104-4

    PubMed  Google Scholar 

  98. Nybo M, Preil SR, Juhl HF et al (2011) Rosiglitazone decreases plasma levels of osteoprotegerin in a randomized clinical trial with type 2 diabetes patients. Basic Clin Pharmacol Toxicol 109:481–485. doi:10.1111/j.1742-7843.2011.00752.x

    CAS  PubMed  Google Scholar 

  99. Park JS, Cho MH, Nam JS et al (2011) Effect of pioglitazone on serum concentrations of osteoprotegerin in patients with type 2 diabetes mellitus. Eur J Endocrinol 164:69–74. doi:10.1530/EJE-10-0875

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Bone HG, Lindsay R, McClung MR et al (2013) Effects of pioglitazone on bone in postmenopausal women with impaired fasting glucose or impaired glucose tolerance: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 98:4691–4701. doi:10.1210/jc.2012-4096

    CAS  PubMed  Google Scholar 

  101. Grey A, Bolland M, Fenwick S et al (2014) The skeletal effects of pioglitazone in type 2 diabetes or impaired glucose tolerance: a randomized controlled trial. Eur J Endocrinol 170:255–262. doi:10.1530/EJE-13-0793

    CAS  PubMed  Google Scholar 

  102. Schwartz AV, Sellmeyer DE, Vittinghoff E et al (2006) Thiazolidinedione (TZD) use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Betteridge DJ (2011) Thiazolidinediones and fracture risk in patients with type 2 diabetes. Diabet Med 28:759–771. doi:10.1111/j.1464-5491.2010.03187.x

    CAS  PubMed  Google Scholar 

  104. Habib ZA, Havstad SL, Wells K et al (2010) Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95:592–600. doi:10.1210/jc.2009-1385

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Meier C, Kraenzlin ME, Bodmer M et al (2008) Use of thiazolidinediones and fracture risk. Arch Intern Med 168:820–825. doi:10.1001/archinte.168.8.820

    CAS  PubMed  Google Scholar 

  106. Aubert RE, Herrera V, Chen W et al (2010) Rosiglitazone and pioglitazone increase fracture risk in women and men with type 2 diabetes. Diabetes Obes Metab 12:716–721. doi:10.1111/j.1463-1326.2010.01225.x

    CAS  PubMed  Google Scholar 

  107. Bilik D, McEwen LN, Brown MB et al (2010) Thiazolidinediones and fractures: evidence from translating research into action for diabetes. J Clin Endocrinol Metab 95:4560–4565. doi:10.1210/jc.2009-2638

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Loke YK, Singh S, Furberg CD (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180:32–39. doi:10.1503/cmaj.080486

    PubMed Central  PubMed  Google Scholar 

  109. Toulis KA, Goulis DG, Anastasilakis AD (2009) Thiazolidinedione use and the risk of fractures. CMAJ 180:841–842. doi:10.1503/cmaj.1090003, author reply 842–3

    PubMed Central  PubMed  Google Scholar 

  110. Hsiao F-Y, Mullins CD (2010) The association between thiazolidinediones and hospitalisation for fracture in type 2 diabetic patients: a Taiwanese population-based nested case–control study. Diabetologia 53:489–496. doi:10.1007/s00125-009-1609-z

    CAS  PubMed  Google Scholar 

  111. Jones SG, Momin SR, Good MW et al (2009) Distal upper and lower limb fractures associated with thiazolidinedione use. Am J Manag Care 15:491–496

    PubMed  Google Scholar 

  112. Bazelier MT, Vestergaard P, Gallagher AM et al (2012) Risk of fracture with thiazolidinediones: disease or drugs? Calcif Tissue Int 90:450–457. doi:10.1007/s00223-012-9591-8

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Zhu Z-N, Jiang Y-F, Ding T (2014) Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone 68:115–123. doi:10.1016/j.bone.2014.08.010

    CAS  PubMed  Google Scholar 

  114. Yaturu S, Bryant B, Jain SK (2007) Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care 30:1574–1576. doi:10.2337/dc06-2606

    CAS  PubMed  Google Scholar 

  115. Borges JLC, Bilezikian JP, Jones-Leone AR et al (2011) A randomized, parallel group, double-blind, multicentre study comparing the efficacy and safety of Avandamet (rosiglitazone/metformin) and metformin on long-term glycaemic control and bone mineral density after 80 weeks of treatment in drug-naïve type 2 d. Diabetes Obes Metab 13:1036–1046. doi:10.1111/j.1463-1326.2011.01461.x

    CAS  PubMed  Google Scholar 

  116. Home PD, Pocock SJ, Beck-Nielsen H et al (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135. doi:10.1016/S0140-6736(09)60953-3

    CAS  PubMed  Google Scholar 

  117. Mancini T, Mazziotti G, Doga M et al (2009) Vertebral fractures in males with type 2 diabetes treated with rosiglitazone. Bone 45:784–788. doi:10.1016/j.bone.2009.06.006

    CAS  PubMed  Google Scholar 

  118. Bray GA, Smith SR, Banerji MA et al (2013) Effect of pioglitazone on body composition and bone density in subjects with prediabetes in the ACT NOW trial. Diabetes Obes Metab 15:931–937. doi:10.1111/dom.12099

    CAS  PubMed  Google Scholar 

  119. Grey A, Beckley V, Doyle A et al (2012) Pioglitazone increases bone marrow fat in type 2 diabetes: results from a randomized controlled trial. Eur J Endocrinol 166:1087–1091. doi:10.1530/EJE-11-1075

    CAS  PubMed  Google Scholar 

  120. Chappard D, Moquereau M, Mercier P et al (2004) Ex vivo bone mineral density of the wrist: influence of medullar fat. Bone 34:1023–1028. doi:10.1016/j.bone.2004.02.002

    CAS  PubMed  Google Scholar 

  121. Dormandy J, Bhattacharya M, van Troostenburg De Bruyn A-R (2009) Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from PROactive. Drug Saf 32:187–202

    CAS  PubMed  Google Scholar 

  122. Nissen SE, Nicholls SJ, Wolski K et al (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299:1561–1573. doi:10.1001/jama.299.13.1561

    CAS  PubMed  Google Scholar 

  123. Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368:1696–1705. doi:10.1016/S0140-6736(06)69705-5

    CAS  PubMed  Google Scholar 

  124. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA et al (2011) Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11:12. doi:10.1186/1472-6793-11-12

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Kim J-Y, Lee S-K, Jo K-J et al (2013) Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 92:533–540. doi:10.1016/j.lfs.2013.01.001

    PubMed  Google Scholar 

  126. Nuche-Berenguer B, Portal-Núñez S, Moreno P et al (2010) Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol 225:585–592. doi:10.1002/jcp.22243

    CAS  PubMed  Google Scholar 

  127. Sanz C, Vázquez P, Blázquez C et al (2010) Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab 298:E634–E643. doi:10.1152/ajpendo.00460.2009

    CAS  PubMed  Google Scholar 

  128. Nuche-Berenguer B, Moreno P, Esbrit P et al (2009) Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 84:453–461. doi:10.1007/s00223-009-9220-3

    CAS  PubMed  Google Scholar 

  129. Nuche-Berenguer B, Lozano D, Gutiérrez-Rojas I et al (2011) GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia. J Endocrinol 209:203–210. doi:10.1530/JOE-11-0015

    CAS  PubMed  Google Scholar 

  130. Ma X, Meng J, Jia M et al (2013) Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J Bone Miner Res 28:1641–1652. doi:10.1002/jbmr.1898

    CAS  PubMed  Google Scholar 

  131. Mabilleau G, Mieczkowska A, Irwin N et al (2013) Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219:59–68. doi:10.1530/JOE-13-0146

    CAS  PubMed  Google Scholar 

  132. Raun K, von Voss P, Gotfredsen CF et al (2007) Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes 56:8–15. doi:10.2337/db06-0565

    CAS  PubMed  Google Scholar 

  133. Yamada C, Yamada Y, Tsukiyama K et al (2008) The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149:574–579. doi:10.1210/en.2007-1292

    CAS  PubMed  Google Scholar 

  134. Sbaraglini ML, Molinuevo MS, Sedlinsky C et al (2014) Saxagliptin affects long-bone microarchitecture and decreases the osteogenic potential of bone marrow stromal cells. Eur J Pharmacol 727C:8–14. doi:10.1016/j.ejphar.2014.01.028

    Google Scholar 

  135. Cusick T, Mu J, Pennypacker BL et al (2013) Bone loss in the oestrogen-depleted rat is not exacerbated by sitagliptin, either alone or in combination with a thiazolidinedione. Diabetes Obes Metab 15:954–957. doi:10.1111/dom.12109

    CAS  PubMed  Google Scholar 

  136. Kyle KA, Willett TL, Baggio LL et al (2011) Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology 152:457–467. doi:10.1210/en.2010-1098

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Glorie L, Behets GJ, Baerts L et al (2014) DPP IV inhibitor treatment attenuates bone loss and improves mechanical bone strength in male diabetic rats. Am J Physiol Endocrinol Metab 307:E447–E455. doi:10.1152/ajpendo.00217.2014

    CAS  PubMed  Google Scholar 

  138. Bunck MC, Eliasson B, Cornér A et al (2011) Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes Metab 13:374–377. doi:10.1111/j.1463-1326.2010.01355.x

    CAS  PubMed  Google Scholar 

  139. Henriksen DB, Alexandersen P, Bjarnason NH et al (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189. doi:10.1359/jbmr.2003.18.12.2180

    CAS  PubMed  Google Scholar 

  140. Henriksen DB, Alexandersen P, Hartmann B et al (2007) Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone 40:723–729. doi:10.1016/j.bone.2006.09.025

    CAS  PubMed  Google Scholar 

  141. Henriksen DB, Alexandersen P, Hartmann B et al (2009) Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 45:833–842. doi:10.1016/j.bone.2009.07.008

    CAS  PubMed  Google Scholar 

  142. Gottschalck IB, Jeppesen PB, Hartmann B et al (2008) Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome. Scand J Gastroenterol 43:1304–1310. doi:10.1080/00365520802200028

    CAS  PubMed  Google Scholar 

  143. Bunck MC, Poelma M, Eekhoff EM et al (2012) Effects of vildagliptin on postprandial markers of bone resorption and calcium homeostasis in recently diagnosed, well-controlled type 2 diabetes patients. J Diabetes 4:181–185. doi:10.1111/j.1753-0407.2011.00168.x

    CAS  PubMed  Google Scholar 

  144. Mabilleau G, Mieczkowska A, Chappard D (2014) Use of glucagon-like peptide-1 receptor agonists and bone fractures: a meta-analysis of randomized clinical trials (−1:meta). J Diabetes 6:260–266. doi:10.1111/1753-0407.12102

    CAS  PubMed  Google Scholar 

  145. Su B, Sheng H, Zhang M et al (2014) Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine. doi:10.1007/s12020-014-0361-4

    Google Scholar 

  146. Monami M, Dicembrini I, Antenore A, Mannucci E (2011) Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care 34:2474–2476. doi:10.2337/dc11-1099

    PubMed Central  PubMed  Google Scholar 

  147. Hirshberg B, Parker A, Edelberg H et al (2013) Safety of saxagliptin: events of special interest in 9156 patients with type 2 diabetes mellitus. Diabetes Metab Res Rev. doi:10.1002/dmrr.2502

    PubMed  Google Scholar 

  148. Tirmenstein M, Dorr TE, Janovitz EB et al (2013) Nonclinical toxicology assessments support the chronic safety of dapagliflozin, a first-in-class sodium-glucose cotransporter 2 inhibitor. Int J Toxicol 32:336–350. doi:10.1177/1091581813505331

    CAS  PubMed  Google Scholar 

  149. Yokono M, Takasu T, Hayashizaki Y et al (2014) SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol 727C:66–74. doi:10.1016/j.ejphar.2014.01.040

    Google Scholar 

  150. Kwon H (2013) Canaglifozin: clinical efficacy and safety. Endocrinol. Metab. Drugs Advis. Comm. Meet. 2013. www.fda.gov/ downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/ Endocrinol.

  151. Ljunggren Ö, Bolinder J, Johansson L et al (2012) Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab 14:990–999. doi:10.1111/j.1463-1326.2012.01630.x

    CAS  PubMed  Google Scholar 

  152. Bolinder J, Ljunggren O, Johansson L et al (2013) Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. doi:10.1111/dom.12189

    PubMed  Google Scholar 

  153. List JF, Woo V, Morales E et al (2009) Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650–657. doi:10.2337/dc08-1863

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Kohan DE, Fioretto P, Tang W, List JF (2013) Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. doi:10.1038/ki.2013.356

    PubMed Central  PubMed  Google Scholar 

  155. (2013) INVOKANA® (canaglifozin) [package insert]. Titusville, NJ: Janssen Pharmaceuticals, Inc. 1–41

  156. Taylor SI, Blau JE RK Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol 3:8–10. doi: 10.1016/S2213-8587(14)70227-X

Download references

Conflicts of interest

Andrea Palermo, Luca D’Onofrio, Richard Eastell, Paolo Pozzilli, Ann V. Schwartz and Nicola Napoli declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Napoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palermo, A., D’Onofrio, L., Eastell, R. et al. Oral anti-diabetic drugs and fracture risk, cut to the bone: safe or dangerous? A narrative review. Osteoporos Int 26, 2073–2089 (2015). https://doi.org/10.1007/s00198-015-3123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3123-0

Keywords

Navigation