Skip to main content
Log in

Trabecular bone score may improve FRAX® prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

FRAX® is widely used to evaluate fracture risk of individuals in clinical settings. However, FRAX® prediction accuracy is not sufficient, and improvement is desired. Trabecular bone score, a bone microarchitecture index, may improve FRAX® prediction accuracy for major osteoporotic fractures in community-dwelling elderly Japanese men.

Introduction

To improve fracture risk assessment in clinical settings, we evaluated whether the combination of FRAX® and Trabecular Bone Score (TBS) improves the prediction accuracy of major osteoporotic fractures (MOFs) in elderly Japanese men compared to FRAX® alone.

Methods

Two thousand and twelve community-dwelling men aged ≥65 years completed the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Baseline Study comprising lumbar spine (LS) and femoral neck areal bone mineral density (aBMD) measurements, and interviews regarding clinical risk factors required to estimate 10-year risk of MOF (hip, spine, distal forearm, and proximal humerus) using the Japanese version of FRAX® (v.3.8). TBS was calculated for the same vertebrae used for LS-aBMD with TBS iNsight software (v.2.1). MOFs that occurred during the follow-up period were identified by interviews or mail and telephone surveys. Prediction accuracy of a logistic model combining FRAX® score and TBS compared to FRAX® alone was evaluated by area under receiver-operating characteristic curves (AUCs), as well as category-free integrated discrimination improvement (IDI) and net reclassification improvement (NRI).

Results

We identified 22 men with MOFs during 8140 person-years (PY) of follow-up among 1872 men; 67 men who suffered from fractures other than MOFs were excluded. Participants with MOFs had significantly lower TBS (p = 0.0015) and higher FRAX® scores (p = 0.0089) than those without. IDI and NRI showed significant improvements in reclassification accuracy using FRAX® plus TBS compared to FRAX® alone (IDI 0.006 (p = 0.0362), NRI 0.452 (p = 0.0351)), although no difference was observed in AUCs between the two.

Conclusions

TBS may improve MOF prediction accuracy of FRAX® for community-dwelling elderly Japanese men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Anonymous (1993) Consensus development conference: diagnosis, prophylaxis and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  2. Johnell O, Kanis JA, Oden E, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of aBMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  3. Rubin KH, Abrahamsen B, Friis-Holmberg T, Hjelmborg JV, Bech M, Hermann AP, Barkmann R, Glüer CC, Brixen K (2013) Comparison of different screening tools (FRAX®, OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population-based prospective study. Bone 56:16–22

    Article  PubMed  Google Scholar 

  4. Tamaki J, Iki M, Kadowaki E, Sato Y, Chiba Y, Akiba T, Matsumoto T, Nishino H, Kagamimori S, Kagawa Y, Yoneshima H (2013) Biochemical markers for bone turnover predict risk of vertebral fractures in postmenopausal women over 10 years: the Japanese Population-based Osteoporosis (JPOS) cohort study. Osteoporos Int 24:887–897

    Article  CAS  PubMed  Google Scholar 

  5. Tanaka S, Kuroda T, Saito M, Shiraki M (2011) Urinary pentosidine improves risk classification using fracture risk assessment tools for postmenopausal women. J Bone Miner Res 26:2778–2784

    Article  CAS  PubMed  Google Scholar 

  6. Bolland MJ, Siu AT, Mason BH, Horne AM, Ames RW, Grey AB, Gamble GD, Reid IR (2011) Evaluation of the FRAX and Garvan fracture risk calculators in older women. J Bone Miner Res 26:420–427

    Article  PubMed  Google Scholar 

  7. Leslie WD, Lix LM (2011) Manitoba bone density program. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system. J Bone Miner Res 26:460–467

    Article  PubMed  Google Scholar 

  8. Osteoporosis Foundation National (2010) Clinician’s guide to prevention and treatment of osteoporosis. National Osteoporosis Foundation, Washington DC

    Google Scholar 

  9. Committee on Practice Bulletins-Gynecology, The American College of Obstetricians and Gynecologists (2012) ACOG practice bulletin N. 129. Osteoporos Obstet Gynecol 120:718–734

    Article  Google Scholar 

  10. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–1046

    Article  CAS  PubMed  Google Scholar 

  11. Winzenrieth R, Michelet F, Hans D (2013) Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom 16:287–296

    Article  PubMed  Google Scholar 

  12. Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312

    Article  PubMed  Google Scholar 

  13. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530

    Article  PubMed  Google Scholar 

  14. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R (2013) The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int 24:2455–2460

    Article  CAS  PubMed  Google Scholar 

  15. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched case–control study. J Clin Densitom 12:170–176

    Article  PubMed  Google Scholar 

  16. Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case–control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86:104–109

    Article  CAS  PubMed  Google Scholar 

  17. Rabier B, Heraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case–control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone 46:176–181

    Article  PubMed  Google Scholar 

  18. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26:2762–2769

    Article  PubMed  Google Scholar 

  19. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24:77–85

    Article  CAS  PubMed  Google Scholar 

  20. Iki M, Tamaki J, Kadowaki E, Sato Y, Dongmei N, Winzenrieth R, Kagamimori S, Kagawa Y, Yoneshima H (2014) Trabecular Bone Score (TBS) predicts vertebral fractures in japanese women over 10 years independently of bone density and prevalent vertebral deformity: the Japanese Population-Based Osteoporosis (JPOS) cohort study. J Bone Miner Res 29:399–407

    Article  PubMed  Google Scholar 

  21. Leslie WD, Johansson H, Kanis JA, Lamy O, Oden A, McCloskey EV, Hans D (2014) Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int 25:2271–2277

    Article  CAS  PubMed  Google Scholar 

  22. Leslie WD, Aubry-Rozier B, Lix LM, Morin SN, Majumdar SR, Hans D (2014) Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba bone density program. Bone 67:10–14

    Article  CAS  PubMed  Google Scholar 

  23. Iki M, Fujita Y, Tamaki J, Kouda K, Yura A, Kadowaki E, Sato Y, Moon JS, Okamoto N, Kurumatani N, Study Group for Functioning Capacity and Quality of Life in Elderly Japanese (Fujiwara-kyo Study Group) (2009) Design and baseline characteristics of a prospective cohort study for determinants of osteoporotic fracture in community-dwelling elderly Japanese men: the Fujiwara-kyo osteoporosis risk in men (FORMEN) study. BMC Musculoskelet Disord 10:165

    Article  PubMed Central  PubMed  Google Scholar 

  24. Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA, Program MBD (2012) Does osteoporosis therapy invalidate FRAX for fracture prediction? J Bone Miner Res 27:1243–1251

    Article  CAS  PubMed  Google Scholar 

  25. Fujiwara S, Nakamura T, Orimo H, Hosoi T, Gorai I, Oden A, Johansson H, Kanis JA (2008) Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX™). Osteoporos Int 19:429–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Orimo H, Sugioka Y, Fukunaga M, Muto Y, Hotokebuchi T, Gorai I, Nakamura T, Kushida K, Tanaka H, Ikai T, Oh-hashi Y (1998) Diagnostic criteria of primary osteoporosis. J Bone Miner Metab 16:139–150

    Article  Google Scholar 

  27. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, Kalkwarf HJ, Langman CB, Plotkin H, Rauch F, Zemel BS, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Silverman S (2008) International society for clinical densitometry 2007 adult and pediatric official positions. Bone 43:1115–1121

    Article  PubMed  Google Scholar 

  28. Iki M, Kagamimori S, Kagawa Y, Matsuzaki T, Yoneshima H, Marumo F (2001) Bone mineral density of the spine, hip and distal forearm in representative samples of the Japanese female population: Japanese Population-Based Osteoporosis (JPOS) Study. Osteoporos Int 12:529–537

    Article  CAS  PubMed  Google Scholar 

  29. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  30. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  31. Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. Reidel, Dordrecht, pp 56–85

    Google Scholar 

  32. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27:157–172, discussion 207–212

    Article  PubMed  Google Scholar 

  33. Kennedy KF, Pencina MJ. A SAS® macro to compute added predictive ability of new markers predicting a dichotomous outcome. In: SouthEeast SAS Users Group Annual Meeting Proceedings 2010, http://analytics.ncsu.edu/sesug/2010/SDA07.Kennedy.pdf

  34. Iki M, Tamaki J, Sato Y, Winzenrieth R, Kagamimori S, Kagawa Y, Yoneshima H (2015) Age-related normative values of trabecular bone score (TBS) for Japanese women: the Japanese Population-based Osteoporosis (JPOS) study. Osteoporos Int 26:245–252

    Article  CAS  PubMed  Google Scholar 

  35. Cook NR, Ridker PM (2009) Advances in measuring the effect of individual predictors of cardiovascular risk: the role of reclassification measures. Ann Intern Med 150:795–802

    Article  PubMed Central  PubMed  Google Scholar 

  36. Hilden J, Gerds TA (2014) A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index. Stat Med 33:3405–3414

    Article  PubMed  Google Scholar 

  37. Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW (2014) Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician’s guide. Ann Intern Med 160:122–131

    Article  PubMed  Google Scholar 

  38. Merry AH, Boer JM, Schouten LJ, Ambergen T, Steyerberg EW, Feskens EJM et al (2012) Risk prediction of incident coronary heart disease in The Netherlands: re-estimation and improvement of the SCORE risk function. Eur J Prev Cardiol 19:840–8

    Article  PubMed  Google Scholar 

  39. Siontis GCM, Tzoulaki I, Siontis KC, Ioannidis JPA (2012) Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ 344:e3318

    Article  PubMed  Google Scholar 

  40. Statistics and Information Department, Ministry of Health, Labour and Welfare (2014) Vital statistics of Japan 2012. Health Labour and Welfare Statistics Association, Tokyo

    Google Scholar 

  41. Ismail AA, O’Neill TW, Cockerill W, Finn JD, Cannata JB, Hoszowski K, Johnell O, Matthis C, Raspe H, Raspe A, Reeve J, Silman AJ (2000) Validity of self-report of fractures: results from a prospective study in men and women across Europe. EPOS study group. European prospective osteoporosis study group. Osteoporos Int 11:248–254

    Article  CAS  PubMed  Google Scholar 

  42. Siggeirsdottir K, Aspelund T, Sigurdsson G, Mogensen B, Chang M, Jonsdottir B, Eiriksdottir G, Launer LJ, Harris TB, Jonsson BY, Gudnason V (2007) Inaccuracy in self-report of fractures may underestimate association with health outcomes when compared with medical record based fracture registry. Eur J Epidemiol 22:631–639

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Fujiwara-kyo Study Group (chaired by Norio Kurumatani with Nozomi Okamoto as secretary general), comprising Nobuko Amano, Yuki Fujita, Akihiro Harano, Kan Hazaki, Masayuki Iki, Junko Iwamoto, Akira Minematsu, Masayuki Morikawa, Keigo Saeki, Noriyuki Tanaka, Kimiko Tomioka, and Motokazu Yanagi, performed most non-skeletal measures in the present study and provided the data to the FORMEN Study. The FORMEN Study was supported by Grant-in-Aid for Scientific Research (no. 20659103: 2008–2009, no. 21390210: 2009–2011, no. 20590661: 2008–2010) from the Japanese Society for the Promotion of Science; a Grant-in-Aid for Young Scientists (no. 20790451: 2008–2010) from the Japanese Ministry of Education, Culture, Sports, Science and Technology; a Grant-in-Aid for Study on Milk Nutrition (2008) from the Japan Dairy Association; a Grant (2007) from the Foundation for Total Health Promotion; a St. Luke’s Life Science Institute Grant-in-Aid for Epidemiological Research (2008); and a Grant (2008) from the Physical Fitness Research Institute, MEIJIYASUDA Life Foundation of Health and Welfare. The funding bodies and collaborators had no role in designing the study, in analyzing and interpreting the data, in writing the manuscript, or in deciding where to submit the manuscript for publication. The authors thank the Toyukai Medical Corporation (Tokyo, Japan), Toyo Medic Corporation (Tokyo, Japan), and SRL Inc. (Tokyo, Japan) for their technical assistance.

Conflicts of interest

Renaud Winzenrieth is a senior scientist at Med-Imaps. Masayuki Iki, Yuki Fujita, Junko Tamaki, Katsuyasu Kouda, Akiko Yura, Yuho Sato, Jong-Seong Moon, Nozomi Okamoto, and Norio Kurumatani declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Iki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iki, M., Fujita, Y., Tamaki, J. et al. Trabecular bone score may improve FRAX® prediction accuracy for major osteoporotic fractures in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Cohort Study. Osteoporos Int 26, 1841–1848 (2015). https://doi.org/10.1007/s00198-015-3092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3092-3

Keyword

Navigation