Skip to main content
Log in

Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Raman microspectroscopic analysis of iliac crest from patients that were treated with alendronate (ALN) for 10 years revealed minimal, transient alterations in bone material properties confined to actively forming bone surfaces compared to patients that were on ALN for 5 years. These changes were not encountered in the bulk tissue.

Introduction

Alendronate (ALN) and other bisphosphonates (BPs) are the most widely prescribed therapy for postmenopausal osteoporosis. Despite their overall excellent safety record and efficacy in reducing fractures, questions have been raised regarding potential detrimental effects that may be related to prolonged bone turnover reduction, although no definite cause-effect relationship has been established to date. The purpose of the present study was to evaluate bone material properties in patients that were receiving ALN for 5 or 10 years.

Methods

Raman microspectroscopic analysis was used to analyze iliac crest biopsies from postmenopausal women with osteoporosis who had been treated with ALN for 5 years and were then re-randomized to placebo (PBO, N = 14), 5 mg/day ALN (N = 10), or 10 mg/day ALN (N = 6) for another 5 years. The parameters monitored and expressed as a function of tissue age were (i) the mineral/matrix ratio (MM), (ii) the relative proteoglycan content (PG), (iii) the relative lipid content (LPD), (iv) the mineral maturity/crystallinity (MMC), and (v) the relative pyridinoline content (PYD).

Results

The obtained data indicate that 10-year ALN use results in minimal, transient bone tissue composition changes compared to use for 5 years, confined to actively forming trabecular surfaces, implying potential differences in bone matrix maturation that nevertheless did not result in differences of these values in bulk tissue.

Conclusions

The data suggest that prolonged reduction in bone turnover during 10 years of therapy with ALN by itself is unlikely to be associated with adverse effects on bone material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Min Res Off J Am Soc Bone Min Res 20:177–184

    Article  CAS  Google Scholar 

  2. Chiu WY, Lee JJ, Tsai KS (2013) Atypical femoral fractures shortly after osteonecrosis of the jaw in a postmenopausal woman taking alendronate for osteoporosis. J Clin Endocrinol Metab 98:E723–E726

    Article  CAS  PubMed  Google Scholar 

  3. Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster DW, Ebeling PR, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O'Keefe R, Papapoulos S, Howe TS, van der Meulen MC, Weinstein RS, Whyte MP (2013) Atypical subtrochanteric and diaphyseal femoral fractures: Second report of a task force of the American Society for Bone and Mineral Research. J Bone Min Res Off J Am Soc Bone Min Res

  4. Ettinger B, Burr DB, Ritchie RO (2013) Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone 55:495–500

    Article  CAS  PubMed  Google Scholar 

  5. Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  6. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Min Res Off J Am Soc Bone Min Res 27:672–678

    Article  CAS  Google Scholar 

  8. Roschger P, Lombardi A, Misof BM, Maier G, Fratzl-Zelman N, Fratzl P, Klaushofer K (2010) Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture Intervention Trial Long-Term Extension (FLEX). J Bone Min Res Off J Am Soc Bone Min Res 25:48–55

    Article  CAS  Google Scholar 

  9. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, Satterfield S, Wallace RB, Bauer DC, Palermo L, Wehren LE, Lombardi A, Santora AC, Cummings SR, Group FR (2006) Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA J Am Med Assoc 296:2927–2938

    Article  CAS  Google Scholar 

  10. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2010) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Min Res Off J Am Soc Bone Min Res 26:12–18

    Article  Google Scholar 

  11. Ellis R, Green E, Winlove C (2009) Structural Analysis of Glycosaminoglycans and Proteoglycans by Means of Raman Microspectrometry. Connect Tissue Res 50:29–36

    Article  PubMed  Google Scholar 

  12. Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901

    Article  CAS  PubMed  Google Scholar 

  13. Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Calcif Tissue Int 79:354–359

    Article  CAS  PubMed  Google Scholar 

  14. Carden A, Rajachar RM, Morris MD, Kohn DH (2003) Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Calcif Tissue Int 72:166–175

    Article  CAS  PubMed  Google Scholar 

  15. Gamsjaeger S, Hofstetter B, Zwettler E, Recker R, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2013) Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporos Int J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 24:339–347

    Article  CAS  Google Scholar 

  16. Donnelly E, Boskey AL, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056

    PubMed Central  PubMed  Google Scholar 

  17. Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JW, Klaushofer K, Paschalis EP, Fratzl P (2010) Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone 47:392–399

    Article  PubMed  Google Scholar 

  18. Boskey AL, Pleshko N, Doty SB, Mendelsohn R (1992) Applications of Fourier Transform Infrared (FT-IR) Microscopy to the study of Mineralization in Bone and Cartilage. Cells Mater 2:209–220

    Google Scholar 

  19. Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MC (2010) Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int 87:450–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627

    Article  CAS  PubMed  Google Scholar 

  21. Boskey AL, Posner AS, Lane JM, Goldberg MR, Cordella DM (1980) Distribution of lipids associated with mineralization in the bovine epiphyseal growth plate. Arch Biochem Biophys 199:305–311

    Article  CAS  PubMed  Google Scholar 

  22. Bi Y, Nielsen KL, Kilts TM, Yoon A, Karsdal MA, Wimer HF, Greenfield EM, Heegaard AM, Young MF (2006) Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts. Bone 38:778–786

    Article  CAS  PubMed  Google Scholar 

  23. Nielsen KL, Allen MR, Bloomfield SA, Andersen TL, Chen XD, Poulsen HS, Young MF, Heegaard AM (2003) Biglycan deficiency interferes with ovariectomy-induced bone loss. J Bone Min Res Off J Am Soc Bone Min Res 18:2152–2158

    Article  CAS  Google Scholar 

  24. Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61:298–305

    Article  CAS  PubMed  Google Scholar 

  25. Xu T, Bianco P, Fisher LW, Longenecker G, Smith E, Goldstein S, Bonadio J, Boskey A, Heegaard AM, Sommer B, Satomura K, Dominguez P, Zhao C, Kulkarni AB, Robey PG, Young MF (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82

    Article  CAS  PubMed  Google Scholar 

  26. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 16:2031–2038

    Article  CAS  Google Scholar 

  27. Fratzl P, Roschger P, Eschberger J, Abendroth B, Klaushofer K (1994) Abnormal bone mineralization after fluoride treatment in osteoporosis: a small-angle x-ray-scattering study. J Bone Min Res Off J Am Soc Bone Min Res 9:1541–1549

    Article  CAS  Google Scholar 

  28. Gao H, Ji B, Jager IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci U S A 100:5597–5600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jager I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Robins S (2007) Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans 35:849–852

    Article  CAS  PubMed  Google Scholar 

  31. Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic–plastic properties of bone. J Bone Jt Surg 57A:956–961

    CAS  Google Scholar 

  32. Wassen MH, Lammens J, Tekoppele JM, Sakkers RJ, Liu Z, Verbout AJ, Bank RA (2000) Collagen structure regulates fibril mineralization in osteogenesis as revealed by cross-link patterns in calcifying callus. J Bone Min Res Off J Am Soc Bone Min Res 15:1776–1785

    Article  CAS  Google Scholar 

  33. Masse PG, Rimnac CM, Yamauchi M, Coburn SP, Rucker RB, Howell DS, Boskey AL (1996) Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone 18:567–574

    Article  CAS  PubMed  Google Scholar 

  34. Oxlund H, Mosekilde L, Ortoft G (1996) Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    Article  CAS  PubMed  Google Scholar 

  35. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall'ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, Boskey AL, Coppersmith SN, Demant P, Paschalis EP (2003) Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res 44:134–142

    Article  CAS  PubMed  Google Scholar 

  37. Malluche HH, Porter DS, Mawad H, Monier-Faugere MC, Pienkowski D (2013) Low-energy fractures without low T-scores characteristic of osteoporosis: a possible bone matrix disorder. J Bone Joint Surg Am 95:e1391–e1396

    Article  PubMed  Google Scholar 

  38. Misof B, Gamsjaeger S, Cohen A, Hofstetter B, Roschger P, Stein E, Nickolas T, Rogers H, Dempster D, Zhou H, Recker R, Lappe J, McMahon D, Paschalis E, Fratzl P, Shane E, Klaushofer K (2012) Bone material properties in premenopausal women with idiopathic osteoporosis. J Bone Min Res Off J Am Soc Bone Min Res

  39. Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90:4644–4649

    Article  CAS  PubMed  Google Scholar 

  40. Chen L, McCrate JM, Lee JC, Li H (2011) The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Nanotechnology 22:105708

    Article  PubMed Central  PubMed  Google Scholar 

  41. Nebe B, Finke B, Luthen F, Bergemann C, Schroder K, Rychly J, Liefeith K, Ohl A (2007) Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomol Eng 24:447–454

    Article  CAS  PubMed  Google Scholar 

  42. Smith IO, Baumann MJ, McCabe LR (2004) Electrostatic interactions as a predictor for osteoblast attachment to biomaterials. J Biomed Mater Res A 70:436–441

    Article  CAS  PubMed  Google Scholar 

  43. Smith IO, Baumann MJ, Obadia L, Bouler JM (2004) Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. J Mater Sci Mater Med 15:841–846

    Article  CAS  PubMed  Google Scholar 

  44. Khan SA, Kanis JA, Vasikaran S, Kline WF, Matuszewski BK, McCloskey EV, Beneton MN, Gertz BJ, Sciberras DG, Holland SD, Orgee J, Coombes GM, Rogers SR, Porras AG (1997) Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. J Bone Miner Res 12:1700–1707

    Article  CAS  PubMed  Google Scholar 

  45. Karim L, Tang SY, Sroga GE, Vashishth D (2013) Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos IntJ Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USA 24:2441–2447

    Article  CAS  Google Scholar 

  46. Schwartz AV, Bauer DC, Cummings SR, Cauley JA, Ensrud KE, Palermo L, Wallace RB, Hochberg MC, Feldstein AC, Lombardi A, Black DM, Group FR (2010) Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial. J Bone Min Res Off J Am Soc Bone Min Res 25:976–982

    Article  CAS  Google Scholar 

  47. Gamsjaeger S, Buchinger B, Zoehrer R, Phipps R, Klaushofer K, Paschalis EP (2011) Effects of one year daily teriparatide treatment on trabecular bone material properties in postmenopausal osteoporotic women previously treated with alendronate or risedronate. Bone 49:1160–1165

    Article  CAS  PubMed  Google Scholar 

  48. Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, Paschalis EP (2012) Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Min Res Off J Am Soc Bone Min Res 27:995–1003

    Article  CAS  Google Scholar 

  49. Hofstetter B, Gamsjaeger S, Varga F, Dobnig H, Stepan JJ, Petto H, Pavo I, Klaushofer K, Paschalis EP (2014) Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naive or on long-term alendronate therapy. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA

  50. Ringe JD, Christodoulakos GE, Mellstrom D, Petto H, Nickelsen T, Marin F, Pavo I (2007) Patient compliance with alendronate, risedronate and raloxifene for the treatment of osteoporosis in postmenopausal women. Curr Med Res Opin 23:2677–2687

    Article  CAS  PubMed  Google Scholar 

  51. Turbi C, Herrero-Beaumont G, Acebes JC, Torrijos A, Grana J, Miguelez R, Sacristan J, Marin F (2004) Compliance and satisfaction with raloxifene versus alendronate for the treatment of postmenopausal osteoporosis in clinical practice: an open-label, prospective, nonrandomized, observational study. Clin Ther 26:245–256

    Article  CAS  PubMed  Google Scholar 

  52. Calton EF, Macleay J, Boskey AL (2011) Fourier transform infrared imaging analysis of cancellous bone in alendronate- and raloxifene-treated osteopenic sheep. Cells Tissues Organs 194:302–306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, Hirano T, Johnston CC (2003) Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone 33:960–969

    Article  CAS  PubMed  Google Scholar 

  54. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB (2011) Bisphosphonates do not alter the rate of secondary mineralization. Bone 49:701–705

    Article  CAS  PubMed  Google Scholar 

  55. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Min Res Off J Am Soc Bone Min Res 27:825–834

    Article  CAS  Google Scholar 

  56. Farlay D, Duclos ME, Gineyts E, Bertholon C, Viguet-Carrin S, Nallala J, Sockalingum GD, Bertrand D, Roger T, Hartmann DJ, Chapurlat R, Boivin G (2011) The ratio 1660/1690 cm(−1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS One 6:e28736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Farlay D, Panczer G, Rey C, Delmas PD, Boivin G (2010) Mineral maturity and crystallinity index are distinct characteristics of bone mineral. J Bone Miner Metab 28:433–445

    Article  PubMed Central  PubMed  Google Scholar 

  58. Rey C, Shimizu M, Collins B, Glimcher MJ (1991) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ion in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age: 2. Investigations in the nu3PO4 domain. Calcif Tissue Int 49:383–388

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Merck for provision of the biopsies analyzed. This study was supported by the AUVA (research funds of the Austrian Workers’ Compensation Board) and the WGKK (Viennese Sickness Insurance Funds).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Paschalis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassler, N., Gamsjaeger, S., Hofstetter, B. et al. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos Int 26, 339–352 (2015). https://doi.org/10.1007/s00198-014-2929-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2929-5

Keyword

Navigation