Skip to main content
Log in

Osteoporosis therapy: a novel insight from natural homeostatic system in the skeleton

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

The skeleton normally responds to mechanical environment to maintain the resulting elastic deformation (strain) of bone, while increased bone strength by an osteoporosis drug results in decreased bone strain. Thus, it can be hypothesized that the effect of osteoporosis therapy is limited by natural homeostatic system in the skeleton. This logic is consistent with the fact that there exists a powerful effect that returns bone mass to its pre-treatment level after the withdrawal of treatment with osteoporosis agents. The present hypothesis provides a new significant insight into the mechanisms by which osteoporosis drugs improve bone fragility. Here we briefly discuss the effects of teriparatide, romosozumab, and odanacatib on bones in animals and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rizzoli R, Branco J, Brandi ML, Boonen S, Bruyere O, Cacoub P, Cooper C, Diez-Perez A, Duder J, Fielding RA, Harvey NC, Hiligsmann M, Kanis JA, Petermans J, Ringe JD, Tsouderos Y, Weinman J, Reginster JY (2014) Management of osteoporosis of the oldest old. Osteoporos Int. doi:10.1007/s00198-014-2755-9

    Google Scholar 

  2. Lindsay R, Miller P, Pohl G, Glass EV, Chen P, Krege JH (2009) Relationship between duration of teriparatide therapy and clinical outcomes in postmenopausal women with osteoporosis. Osteoporos Int 20:943–948

    Article  CAS  PubMed  Google Scholar 

  3. Matsumoto T, Takano T, Saito H, Takahashi F (2014) Vitamin D analogs and bone: preclinical and clinical studies with eldecalcitol. Bonekey Rep 3:513

    Article  PubMed  Google Scholar 

  4. Sakai S, Suzuki M, Tashiro Y, Tanaka K, Takeda S, Aizawa K, Hirata M, Yogo K, Endo K (2014) Vitamin D receptor signaling enhances locomotive ability in mice. J Bone Miner Res. doi:10.1002/jbmr.2317

    Google Scholar 

  5. Sugiyama T (2013) Vitamin D and calcium supplementation to prevent fractures in adults. Ann Intern Med 159:856

    Article  PubMed  Google Scholar 

  6. Sugiyama T, Tanaka S, Miyajima T, Kim YT, Oda H (2014) Vitamin D supplementation and fracture risk in adults: a new insight. Osteoporos Int. doi:10.1007/s00198-014-2798-y

    Google Scholar 

  7. Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A: Discov Mol Cell Evol Biol 275:1081–1101

    Article  Google Scholar 

  8. Sugiyama T (2013) Maternal vitamin D status during pregnancy and bone-mineral content in offspring. Lancet 382:767

    Article  PubMed  Google Scholar 

  9. Shanbhogue VV, Hansen S, Folkestad L, Brixen K, Beck-Nielsen SS (2014) Bone geometry, volumetric density, microarchitecture and estimated bone strength assessed by HR-pQCT in adult patients with hypophosphatemic rickets. J Bone Miner Res. doi:10.1002/jbmr.2310

    PubMed  Google Scholar 

  10. Srinivasan S, Gross TS, Bain SD (2012) Bone mechanotransduction may require augmentation in order to strengthen the senescent skeleton. Ageing Res Rev 11:353–360

    Article  PubMed Central  PubMed  Google Scholar 

  11. Milovanovic P, Zimmermann EA, Hahn M, Djonic D, Puschel K, Djuric M, Amling M, Busse B (2013) Osteocytic canalicular networks: morphological implications for altered mechanosensitivity. ACS Nano 7:7542–7551

    Article  CAS  PubMed  Google Scholar 

  12. Meakin LB, Galea GL, Sugiyama T, Lanyon LE, Price JS (2014) Age-related impairment of bones’ adaptive response to loading in mice is associated with sex-related deficiencies in osteoblasts but no change in osteocytes. J Bone Miner Res 29:1859–1871

    Article  PubMed Central  PubMed  Google Scholar 

  13. Boonen S, Ferrari S, Miller PD, Eriksen EF, Sambrook PN, Compston J, Reid IR, Vanderschueren D, Cosman F (2012) Postmenopausal osteoporosis treatment with antiresorptives: effects of discontinuation or long-term continuation on bone turnover and fracture risk—a perspective. J Bone Miner Res 27:963–974

    Article  CAS  PubMed  Google Scholar 

  14. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC, Grazette L, San Martin J, Gallagher JC (2011) Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab 96:972–980

    Article  CAS  PubMed  Google Scholar 

  15. Sugiyama T, Meakin LB, Browne WJ, Galea GL, Price JS, Lanyon LE (2012) Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition. J Bone Miner Res 27:1784–1793

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ellman R, Spatz J, Cloutier A, Palme R, Christiansen BA, Bouxsein ML (2013) Partial reductions in mechanical loading yield proportional changes in bone density, bone architecture, and muscle mass. J Bone Miner Res 28:875–885

    Article  PubMed Central  PubMed  Google Scholar 

  17. Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, Muller R (2013) Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One 8:e62172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sugiyama T, Saxon LK, Zaman G, Moustafa A, Sunters A, Price JS, Lanyon LE (2008) Mechanical loading enhances the anabolic effects of intermittent parathyroid hormone (1–34) on trabecular and cortical bone in mice. Bone 43:238–248

    Article  CAS  PubMed  Google Scholar 

  19. Poole KE, Treece GM, Ridgway GR, Mayhew PM, Borggrefe J, Gee AH (2011) Targeted regeneration of bone in the osteoporotic human femur. PLoS One 6:e16190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Murad MH, Drake MT, Mullan RJ, Mauck KF, Stuart LM, Lane MA, Abu Elnour NO, Erwin PJ, Hazem A, Puhan MA, Li T, Montori VM (2012) Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab 97:1871–1880

    Article  CAS  PubMed  Google Scholar 

  21. Michalska D, Luchavova M, Zikan V, Raska I Jr, Kubena AA, Stepan JJ (2012) Effects of morning vs. evening teriparatide injection on bone mineral density and bone turnover markers in postmenopausal osteoporosis. Osteoporos Int 23:2885–2891

    Article  CAS  PubMed  Google Scholar 

  22. Luchavova M, Zikan V, Michalska D, Raska I Jr, Kubena AA, Stepan JJ (2011) The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis. Eur J Endocrinol 164:643–648

    Article  CAS  PubMed  Google Scholar 

  23. Sugiyama T, Taguchi T, Kawai S (2002) Adaptation of bone to mechanical loads. Lancet 359:1160

    Article  PubMed  Google Scholar 

  24. Sugiyama T, Meakin LB, Galea GL, Jackson BF, Lanyon LE, Ebetino FH, Russell RG, Price JS (2011) Risedronate does not reduce mechanical loading-related increases in cortical and trabecular bone mass in mice. Bone 49:133–139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Pierroz DD, Bonnet N, Baldock PA, Ominsky MS, Stolina M, Kostenuik PJ, Ferrari SL (2010) Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. J Biol Chem 285:28164–28173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ma YL, Zeng Q, Donley DW, Ste-Marie LG, Gallagher JC, Dalsky GP, Marcus R, Eriksen EF (2006) Teriparatide increases bone formation in modeling and remodeling osteons and enhances IGF-II immunoreactivity in postmenopausal women with osteoporosis. J Bone Miner Res 21:855–864

    Article  CAS  PubMed  Google Scholar 

  27. Cosman F, Eriksen EF, Recknor C, Miller PD, Guanabens N, Kasperk C, Papanastasiou P, Readie A, Rao H, Gasser JA, Bucci-Rechtweg C, Boonen S (2011) Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1–34)] in postmenopausal osteoporosis. J Bone Miner Res 26:503–511

    Article  CAS  PubMed  Google Scholar 

  28. Tsai JN, Uihlein AV, Lee H, Kumbhani R, Siwila-Sackman E, McKay EA, Burnett-Bowie SA, Neer RM, Leder BZ (2013) Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 382:50–56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Brown JP, Reid IR, Wagman RB, Kendler D, Miller PD, Jensen JE, Bolognese MA, Daizadeh N, Valter I, Zerbini CA, Dempster DW (2014) Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. J Bone Miner Res 29:2051–2056

    Article  CAS  PubMed  Google Scholar 

  30. Tsai JN, Uihlein AV, Burnett-Bowie SM, Neer RM, Zhu Y, Derrico N, Lee H, Bouxsein ML, Leder BZ (2014) Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT study. J Bone Miner Res. doi:10.1002/jbmr.2315

    PubMed  Google Scholar 

  31. Robling AG, Turner CH (2009) Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:319–338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross TS, Lanyon LE, Price JS (2012) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 23:1225–1234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Ominsky MS, Niu QT, Li C, Li X, Ke HZ (2014) Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res 29:1424–1430

    Article  CAS  PubMed  Google Scholar 

  34. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26:19–26

    Article  CAS  PubMed  Google Scholar 

  35. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A, Langdahl BL, Reginster JY, Zanchetta JR, Wasserman SM, Katz L, Maddox J, Yang YC, Libanati C, Bone HG (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420

    Article  CAS  PubMed  Google Scholar 

  36. Morse A, McDonald M, Kelly N, Melville K, Schindeler A, Kramer I, Kneissel M, van der Meulen M, Little D (2014) Mechanical load increases in bone formation via a sclerostin-independent pathway. J Bone Miner Res. doi:10.1002/jbmr.2278

    PubMed Central  Google Scholar 

  37. Delgado-Calle J, Riancho JA, Klein-Nulend J (2014) Nitric oxide is involved in the down-regulation of SOST expression induced by mechanical loading. Calcif Tissue Int 94:414–422

    Article  CAS  PubMed  Google Scholar 

  38. Jamal SA, Hamilton CJ, Eastell R, Cummings SR (2011) Effect of nitroglycerin ointment on bone density and strength in postmenopausal women: a randomized trial. JAMA 305:800–807

    Article  CAS  PubMed  Google Scholar 

  39. Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H, Beighton P, Papapoulos SE (2005) Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90:6392–6395

    Article  CAS  PubMed  Google Scholar 

  40. Sugiyama T, Taguchi T, Kawai S (2004) Spontaneous fractures and quality of life in cerebral palsy. Lancet 364:28

    Article  PubMed  Google Scholar 

  41. Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Suva LJ, Dwyer D, Stolina M, Ke HZ, Bouxsein ML (2013) Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res 28:865–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, Resch H, Verbruggen N, Hustad CM, DaSilva C, Petrovic R, Santora AC, Ince BA, Lombardi A (2011) Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res 26:242–251

    Article  CAS  PubMed  Google Scholar 

  43. Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, le Duong T (2012) Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 27:524–537

    Article  CAS  PubMed  Google Scholar 

  44. Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, le Duong T (2012) Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res 27:509–523

    Article  CAS  PubMed  Google Scholar 

  45. Pennypacker BL, Chen CM, Zheng H, Shih MS, Belfast M, Samadfam R, le Duong T (2014) Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys. J Bone Miner Res 29:1847–1858

    Article  CAS  PubMed  Google Scholar 

  46. Fratzl-Zelman N, Valenta A, Roschger P, Nader A, Gelb BD, Fratzl P, Klaushofer K (2004) Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J Clin Endocrinol Metab 89:1538–1547

    Article  CAS  PubMed  Google Scholar 

  47. Idris AI, Rojas J, Greig IR, Van’t Hof RJ, Ralston SH (2008) Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82:191–201

    Article  CAS  PubMed  Google Scholar 

  48. Ma YL, Zeng QQ, Chiang AY, Burr D, Li J, Dobnig H, Fahrleitner-Pammer A, Michalska D, Marin F, Pavo I, Stepan JJ (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147

    Article  CAS  PubMed  Google Scholar 

  49. Engelke K, Fuerst T, Dardzinski B, Kornak J, Ather S, Genant HK, de Papp A (2014) Odanacatib treatment affects trabecular and cortical bone in the femur of postmenopausal women—results of a 2-year placebo-controlled trial. J Bone Miner Res. doi:10.1002/jbmr.2292

    PubMed Central  Google Scholar 

  50. Gajic-Veljanoski O, Tomlinson G, Srighanthan J, Adachi JD, Josse R, Brown JP, Cheung AM (2014) Effect of odanacatib on BMD and fractures: estimates from Bayesian univariate and bivariate meta-analysis. J Clin Endocrinol Metab. doi:10.1210/jc.2014-1162

    PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, T., Kim, Y.T. & Oda, H. Osteoporosis therapy: a novel insight from natural homeostatic system in the skeleton. Osteoporos Int 26, 443–447 (2015). https://doi.org/10.1007/s00198-014-2923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2923-y

Keywords

Navigation