Skip to main content

Advertisement

Log in

Age-related differences in the activity of arterial mineral deposition and regional bone metabolism: a 18F-sodium fluoride positron emission tomography study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Functional 18F-fluoride PET demonstrated an inverse relationship between the activity of arterial mineral deposition and regional bone metabolism. While bone metabolism decreases with age, the activity of arterial mineral deposition increases.

Introduction

The extent of arterial calcification increases with age, whereas bone mineral density decreases, evidencing a well-known inverse correlation on morphological basis. The aim of this study was to evaluate the functional relationship between the activity of arterial mineral deposition and regional bone metabolism as assessed by 18F-sodium fluoride (NaF) PET/CT.

Methods

Three hundred four subjects were examined by 18F-NaF PET/CT. Tracer accumulation in the femoral arteries was analyzed both qualitatively and semiquantitatively by measuring the blood-pool-corrected standardized uptake value (target-to-background ratio). Uptake was compared with cardiovascular risk factors (RFs), calcified plaque burden, and regional bone metabolism as assessed by PET/CT.

Results

The activity of arterial mineral deposition significantly increased with age (p < 0.001), whereas regional bone metabolism significantly decreased (p < 0.001). There was a significant inverse correlation between bone metabolism and arterial mineral deposition (unadjusted, p < 0.001); that association was not significant (p = 0.79) when controlled for age and other RFs. Both high activity of arterial mineral deposition and low bone metabolism were significantly associated with cardiovascular events and other RFs.

Conclusion

18F-NaF PET/CT provides a tool to visualize and quantify the activity of arterial mineral deposition and regional bone metabolism. In this study, we observed an inverse correlation between the activity of arterial mineral deposition and regional bone metabolism. While the activity of arterial mineral deposition significantly increases with age, regional bone metabolism decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H (2007) Vascular calcification and osteoporosis—from clinical observation towards molecular understanding. Osteoporos Int 18:251–259

    Article  CAS  PubMed  Google Scholar 

  2. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  CAS  PubMed  Google Scholar 

  3. Demer LL, Tintut Y (2008) Vascular calcification: pathobiology of a multifaceted disease. Circulation 117:2938–2948

    Article  PubMed  Google Scholar 

  4. Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O’Donnell CJ, Wilson PW (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68:271–276

    Article  CAS  PubMed  Google Scholar 

  5. Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C (2006) Radiographic measure of aorta calcification is a site-specific predictor of bone loss and fracture risk at the hip. J Intern Med 259:598–605

    Article  CAS  PubMed  Google Scholar 

  6. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89:4246–4253

    Article  CAS  PubMed  Google Scholar 

  7. Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ, Detrano RC, Dunstan CR, Shah PK, Rajavashisth TB (2003) Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci U S A 100:11201–11206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Doherty TM, Fitzpatrick LA, Inoue D, Qiao JH, Fishbein MC, Detrano RC, Shah PK, Rajavashisth TB (2004) Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 25:629–672

    Article  CAS  PubMed  Google Scholar 

  9. Schinke T, Karsenty G (2000) Vascular calcification—a passive process in need of inhibitors. Nephrol Dial Transplant 15:1272–1274

    Article  CAS  PubMed  Google Scholar 

  10. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST (2008) Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med 49:68–78

    Article  PubMed  Google Scholar 

  12. Blau M, Ganatra R, Bender MA (1972) 18F-fluoride for bone imaging. Semin Nucl Med 2:31–37

    Article  CAS  PubMed  Google Scholar 

  13. Piert M, Zittel TT, Becker GA, Jahn M, Stahlschmidt A, Maier G, Machulla HJ, Bares R (2001) Assessment of porcine bone metabolism by dynamic. J Nucl Med 42:1091–1100

    CAS  PubMed  Google Scholar 

  14. Frost ML, Fogelman I, Blake GM, Marsden PK, Cook G Jr (2004) Dissociation between global markers of bone formation and direct measurement of spinal bone formation in osteoporosis. J Bone Miner Res 19:1797–1804

    Article  CAS  PubMed  Google Scholar 

  15. Uchida K, Nakajima H, Miyazaki T, Yayama T, Kawahara H, Kobayashi S, Tsuchida T, Okazawa H, Fujibayashi Y, Baba H (2009) Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET: a prospective study. J Nucl Med 50:1808–1814

    Article  CAS  PubMed  Google Scholar 

  16. Puri T, Frost ML, Curran KM, Siddique M, Moore AE, Cook GJ, Marsden PK, Fogelman I, Blake GM Differences in regional bone metabolism at the spine and hip: a quantitative study using (18)F-fluoride positron emission tomography. Osteoporos Int 24:633–639

  17. Derlin T, Toth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, Mester J, Klutmann S (2011) Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med 52:1020–1027

    Article  PubMed  Google Scholar 

  18. Derlin T, Richter U, Bannas P, Begemann P, Buchert R, Mester J, Klutmann S (2010) Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 51:862–865

    Article  PubMed  Google Scholar 

  19. Derlin T, Wisotzki C, Richter U, Apostolova I, Bannas P, Weber C, Mester J, Klutmann S (2011) In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med 52:362–368

    Article  PubMed  Google Scholar 

  20. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, Yeoh SE, Wallace W, Salter D, Fletcher AM, van Beek EJ, Flapan AD, Uren NG, Behan MW, Cruden NL, Mills NL, Fox KA, Rudd JH, Dweck MR, Newby DE (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383:705–713

    Article  PubMed  Google Scholar 

  21. Janssen T, Bannas P, Herrmann J, Veldhoen S, Busch JD, Treszl A, Munster S, Mester J, Derlin T (2013) Association of linear (1)(8)F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: a PET/CT study. J Nucl Cardiol 20:569–577

    Article  PubMed  Google Scholar 

  22. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81

    Article  CAS  PubMed  Google Scholar 

  23. Kurata S, Shizukuishi K, Tateishi U, Yoneyama T, Hino A, Ishibashi M, Inoue T (2012) Age-related changes in pre- and postmenopausal women investigated with 18F-fluoride PET—a preliminary study. Skelet Radiol 41:947–953

    Article  Google Scholar 

  24. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, Richardson H, White A, McKillop G, van Beek EJ, Boon NA, Rudd JH, Newby DE (2012) Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol 59:1539–1548

    Article  CAS  PubMed  Google Scholar 

  25. Beheshti M, Saboury B, Mehta NN, Torigian DA, Werner T, Mohler E, Wilensky R, Newberg AB, Basu S, Langsteger W, Alavi A (2011) Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography—a novel concept. Hellén J Nucl Med 14:114–120

    Google Scholar 

  26. Dweck MR, Khaw HJ, Sng GK, Luo EL, Baird A, Williams MC, Makiello P, Mirsadraee S, Joshi NV, van Beek EJ, Boon NA, Rudd JH, Newby DE (2013) Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur Heart J 34:1567–1574

    Article  CAS  PubMed  Google Scholar 

  27. Bural GG, Torigian DA, Chamroonrat W, Houseni M, Chen W, Basu S, Kumar R, Alavi A (2008) FDG-PET is an effective imaging modality to detect and quantify age-related atherosclerosis in large arteries. Eur J Nucl Med Mol Imaging 35:562–569

    Article  PubMed  Google Scholar 

  28. Tanko LB, Christiansen C, Cox DA, Geiger MJ, McNabb MA, Cummings SR (2005) Relationship between osteoporosis and cardiovascular disease in postmenopausal women. J Bone Miner Res 20:1912–1920

    Article  PubMed  Google Scholar 

  29. Schwartz AV, Sellmeyer DE, Strotmeyer ES, Tylavsky FA, Feingold KR, Resnick HE, Shorr RI, Nevitt MC, Black DM, Cauley JA, Cummings SR, Harris TB (2005) Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res 20:596–603

    Article  PubMed  Google Scholar 

  30. Yamaguchi T, Sugimoto T, Yano S, Yamauchi M, Sowa H, Chen Q, Chihara K (2002) Plasma lipids and osteoporosis in postmenopausal women. Endocr J 49:211–217

    Article  CAS  PubMed  Google Scholar 

  31. Rajzbaum G, Bezie Y (2006) Postmenopausal osteoporosis and atheroma. Joint Bone Spine 73:661–666

    Article  PubMed  Google Scholar 

  32. Bagger YZ, Rasmussen HB, Alexandersen P, Werge T, Christiansen C, Tanko LB (2007) Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int 18:505–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Laroche M, Pouilles JM, Ribot C, Bendayan P, Bernard J, Boccalon H, Mazieres B (1994) Comparison of the bone mineral content of the lower limbs in men with ischaemic atherosclerotic disease. Clin Rheumatol 13:611–614

    Article  CAS  PubMed  Google Scholar 

  34. Boellaard R (2009) Standards for PET image acquisition and quantitative data analysis. J Nucl Med 50:11S–20S

    Article  CAS  PubMed  Google Scholar 

  35. Blomberg BA, Thomassen A, Takx RA, Vilstrup MH, Hess S, Nielsen AL, Diederichsen AC, Mickley H, Alavi A, Høilund-Carlsen PF (2014) Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J Nucl Cardiol 21:293–304

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Derlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derlin, T., Janssen, T., Salamon, J. et al. Age-related differences in the activity of arterial mineral deposition and regional bone metabolism: a 18F-sodium fluoride positron emission tomography study. Osteoporos Int 26, 199–207 (2015). https://doi.org/10.1007/s00198-014-2839-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2839-6

KEYWORD

Navigation