Skip to main content
Log in

Accuracy of spinal curvature assessed by a computer-assisted device and anthropometric indicators in discriminating vertebral fractures among individuals with back pain

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Summary

This study examined the accuracy of thoracic and lumbar kyphotic angles as well as anthropometric indicators for discriminating patients with vertebral fracture among Japanese women >50 years old with back pain. Along with region-specific kyphotic angles and anthropometric indicators, the combination of thoracic and lumbar kyphotic angles offered the highest accuracy.

Introduction

Vertebral fractures have been associated with thoracic kyphosis. However, reports on lumbar kyphotic changes in association with vertebral fracture are scarce. This study investigated the accuracy of thoracic kyphotic angle (TKA) and lumbar kyphotic angle (LKA) measurements as well as anthropometric indicators (wall–occiput distance (WOD) and rib–pelvis distance (RPD)) in discriminating patients with vertebral fracture.

Methods

Lateral radiographs of the spine were obtained in 70 postmenopausal Japanese women who visited an orthopedic clinic with low back pain (mean age, 76.2 ± 9.0 years). Radiographic vertebral fracture was diagnosed using quantitative measurement according to Japanese criteria. Osteoarthritis (OA) was defined as Kellgren–Lawrence (KL) grade 3 or higher. TKA and LKA were measured using SpinalMouse®. WOD and RPD were also measured.

Results

At least one vertebral fracture was present in 49 subjects (70 %). Women with vertebral fractures showed significant increases in LKA, TKA + LKA, and WOD and decreases in RPD. Logistic regression analysis showed significant association between TKA + LKA and vertebral fracture independent of the presence of OA. Receiver operating characteristic analysis revealed that TKA was useful for discriminating thoracic fractures (area under the curve (AUC), 0.730) and LKA was useful for lumbar fractures (AUC, 0.691). The combination of TKA + LKA offered the highest accuracy for detecting thoracic, lumbar, and any vertebral fractures, with AUCs of 0.779, 0.728, and 0.783, respectively. WOD and RPD showed low-to-moderate accuracies for thoracic, lumbar, and any vertebral fractures.

Conclusions

Assessment of spinal kyphosis by SpinalMouse® as well as anthropometric indicators proved useful in discriminating subjects with vertebral fractures. These convenient and radiation-free methods could contribute to early diagnosis of vertebral fractures and subsequent appropriate treatment, thus preventing additional osteoporotic fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ 3rd (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215

    Article  CAS  PubMed  Google Scholar 

  2. Clark P, Cons-Molina F, Deleze M et al (2009) The prevalence of radiographic vertebral fractures in Latin American countries: the Latin American Vertebral Osteoporosis Study (LAVOS). Osteoporos Int 20:275–282

    Article  CAS  PubMed  Google Scholar 

  3. Sadat-Ali M, Gullenpet AH, Al-Mulhim F, Al Turki H, Al-Shammary H, Al-Elq A, Al-Othman A (2009) Osteoporosis-related vertebral fractures in postmenopausal women: prevalence in a Saudi Arabian sample. East Mediterr Health J 15:1420–1425

    CAS  PubMed  Google Scholar 

  4. Lunt M, O’Neill TW, Felsenberg D, Reeve J, Kanis JA, Cooper C, Silman AJ (2003) Characteristics of a prevalent vertebral deformity predict subsequent vertebral fracture: results from the European Prospective Osteoporosis Study (EPOS). Bone 33:505–513

    Article  PubMed  Google Scholar 

  5. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    Article  CAS  PubMed  Google Scholar 

  6. Kitahara H, Ye Z, Aoyagi K et al (2012) Associations of vertebral deformities and osteoarthritis with back pain among Japanese women: the Hizen-Oshima study. Osteoporos Int 24:907–915

    Article  PubMed Central  PubMed  Google Scholar 

  7. Rikli R, Jones C (1999) Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act 7:129–161

    Google Scholar 

  8. Antonelli-Incalzi R, Pedone C, Cesari M, Di Iorio A, Bandinelli S, Ferrucci L (2007) Relationship between the occiput-wall distance and physical performance in the elderly: a cross sectional study. Aging Clin Exp Res 19:207–212

    Article  PubMed Central  PubMed  Google Scholar 

  9. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018

    Article  PubMed  Google Scholar 

  10. Spector TD, McCloskey EV, Doyle DV, Kanis JA (1993) Prevalence of vertebral fracture in women and the relationship with bone density and symptoms: the Chingford Study. J Bone Miner Res 8:817–822

    Article  CAS  PubMed  Google Scholar 

  11. Fechtenbaum J, Cropet C, Kolta S, Verdoncq B, Orcel P, Roux C (2005) Reporting of vertebral fractures on spine X-rays. Osteoporos Int 16:1823–1826

    Article  CAS  PubMed  Google Scholar 

  12. McKiernan FE (2009) The broadening spectrum of osteoporotic vertebral fracture. Skeletal Radiol 38:303–308

    Article  PubMed  Google Scholar 

  13. Siminoski K, Warshawski RS, Jen H, Lee KC (2011) The accuracy of clinical kyphosis examination for detection of thoracic vertebral fractures: comparison of direct and indirect kyphosis measures. J Musculoskelet Neuronal Interact 11:249–256

    CAS  PubMed  Google Scholar 

  14. Abe K, Tamaki J, Kadowaki E, Sato Y, Morita A, Komatsu M, Takeuchi S, Kajita E, Iki M (2008) Use of anthropometric indicators in screening for undiagnosed vertebral fractures: a cross-sectional analysis of the Fukui Osteoporosis Cohort (FOC) study. BMC Musculoskelet Disord 9:157

    Article  PubMed Central  PubMed  Google Scholar 

  15. Vosse D, van der Heijde D, Landewe R, Geusens P, Mielants H, Dougados M, van der Linden S (2006) Determinants of hyperkyphosis in patients with ankylosing spondylitis. Ann Rheum Dis 65:770–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Culham EG, Jimenez HA, King CE (1994) Thoracic kyphosis, rib mobility, and lung volumes in normal women and women with osteoporosis. Spine 19:1250–1255

    Article  CAS  PubMed  Google Scholar 

  17. Leidig-Bruckner G, Minne HW, Schlaich C, Wagner G, Scheidt-Nave C, Bruckner T, Gebest HJ, Ziegler R (1997) Clinical grading of spinal osteoporosis: quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 12:663–675

    Article  CAS  Google Scholar 

  18. Siminoski K, Warshawski RS, Jen H, Lee KC (2003) Accuracy of physical examination using the rib-pelvis distance for detection of lumbar vertebral fractures. Am J Med 115:233–236

    Article  PubMed  Google Scholar 

  19. Cortet B, Roches E, Logier R, Houvenagel E, Gaydier-Souquieres G, Puisieux F, Delcambre B (2002) Evaluation of spinal curvatures after a recent osteoporotic vertebral fracture. Joint Bone Spine 69:201–208

    Article  PubMed  Google Scholar 

  20. De Smet AA, Robinson RG, Johnson BE, Lukert BP (1988) Spinal compression fractures in osteoporotic women: patterns and relationship to hyperkyphosis. Radiology 166:497–500

    PubMed  Google Scholar 

  21. Ensrud KE, Black DM, Harris F, Ettinger B, Cummings SR (1997) Correlates of kyphosis in older women. The Fracture Intervention Trial Research Group. J Am Geriatr Soc 45:682–687

    CAS  PubMed  Google Scholar 

  22. Roux C, Fechtenbaum J, Kolta S, Said-Nahal R, Briot K, Benhamou CL (2010) Prospective assessment of thoracic kyphosis in postmenopausal women with osteoporosis. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 25:362–368

    Article  Google Scholar 

  23. Schneider DL, von Muhlen D, Barrett-Connor E, Sartoris DJ (2004) Kyphosis does not equal vertebral fractures: the Rancho Bernardo study. J Rheumatol 31:747–752

    PubMed  Google Scholar 

  24. Huang MH, Barrett-Connor E, Greendale GA, Kado DM (2006) Hyperkyphotic posture and risk of future osteoporotic fractures: the Rancho Bernardo study. J Bone Mineral Res: Off J Am Soc Bone Mineral Res 21:419–423

    Article  Google Scholar 

  25. Krause M, Breer S, Mohrmann B, Vettorazzi E, Marshall RP, Amling M, Barvencik F (2013) Influence of non-traumatic thoracic and lumbar vertebral fractures on sagittal spine alignment assessed by radiation-free spinometry. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Nat Osteoporos Foun USA 24:1859–1868

    Article  CAS  Google Scholar 

  26. Post RB, Leferink VJ (2004) Spinal mobility: sagittal range of motion measured with the SpinalMouse, a new non-invasive device. Arch Orthop Trauma Surg 124:187–192

    Article  CAS  PubMed  Google Scholar 

  27. Miyakoshi N, Hongo M, Maekawa S, Ishikawa Y, Shimada Y, Okada K, Itoi E (2005) Factors related to spinal mobility in patients with postmenopausal osteoporosis. Osteoporos Int 16:1871–1874

    Article  PubMed  Google Scholar 

  28. Mannion AF, Knecht K, Balaban G, Dvorak J, Grob D (2004) A new skin-surface device for measuring the curvature and global and segmental ranges of motion of the spine: reliability of measurements and comparison with data reviewed from the literature. Eur Spine J: Off Publ Eur Spine Soc, Eur Spinal Deformity Soc Eur Sect Cervical Spine Res Soc 13:122–136

    Article  Google Scholar 

  29. Gallagher JC, Hedlund LR, Stoner S, Meeger C (1988) Vertebral morphometry: normative data. Bone Miner 4:189–196

    CAS  PubMed  Google Scholar 

  30. Spencer N, Steiger P, Cummings S, Genant H (1990) Placement of points for digitizing spine films. J Bone Miner Res 5:s247

    Google Scholar 

  31. Mori S, Soen S, Hagino H et al (2013) Justification criteria for vertebral fractures: year 2012 revision. J Bone Miner Metab 31:258–261

    Article  PubMed  Google Scholar 

  32. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yoshimura N, Muraki S, Oka H, Mabuchi A, Kinoshita H, Yosihda M, Kawaguchi H, Nakamura K, Akune T (2009) Epidemiology of lumbar osteoporosis and osteoarthritis and their causal relationship—is osteoarthritis a predictor for osteoporosis or vice versa?: the Miyama study. Osteoporos Int 20:999–1008

    Article  CAS  PubMed  Google Scholar 

  34. Green AD, Colon-Emeric CS, Bastian L, Drake MT, Lyles KW (2004) Does this woman have osteoporosis? JAMA 292:2890–2900

    Article  CAS  PubMed  Google Scholar 

  35. Gelb DE, Lenke LG, Bridwell KH, Blanke K, McEnery KW (1995) An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine (Phila Pa 1976) 20:1351–1358

    Article  CAS  Google Scholar 

  36. Milne JS, Lauder IJ (1974) Age effects in kyphosis and lordosis in adults. Ann Hum Biol 1:327–337

    Article  CAS  PubMed  Google Scholar 

  37. Lyles KW, Gold DT, Shipp KM, Pieper CF, Martinez S, Mulhausen PL (1993) Association of osteoporotic vertebral compression fractures with impaired functional status. Am J Med 94:595–601

    Article  CAS  PubMed  Google Scholar 

  38. Ishikawa Y, Miyakoshi N, Kasukawa Y, Hongo M, Shimada Y (2009) Spinal curvature and postural balance in patients with osteoporosis. Osteoporos Int 20:2049–2053

    Article  CAS  PubMed  Google Scholar 

  39. Tobias JH, Hutchinson AP, Hunt LP, McCloskey EV, Stone MD, Martin JC, Thompson PW, Palferman TG, Bhalla AK (2007) Use of clinical risk factors to identify postmenopausal women with vertebral fractures. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Nat Osteoporos Found USA 18:35–43

    Article  CAS  Google Scholar 

  40. Balzini L, Vannucchi L, Benvenuti F, Benucci M, Monni M, Cappozzo A, Stanhope SJ (2003) Clinical characteristics of flexed posture in elderly women. J Am Geriatr Soc 51:1419–1426

    Article  PubMed  Google Scholar 

  41. Katzman WB, Wanek L, Shepherd JA, Sellmeyer DE (2010) Age-related hyperkyphosis: its causes, consequences, and management. J Orthop Sports Phys Ther 40:352–360

    Article  PubMed Central  PubMed  Google Scholar 

  42. Sinaki M, Itoi E, Rogers JW, Bergstralh EJ, Wahner HW (1996) Correlation of back extensor strength with thoracic kyphosis and lumbar lordosis in estrogen-deficient women. Am J Phys Med Rehabil/Assoc Acad Physiatrists 75:370–374

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the subjects and staff at the participating hospital for allowing us to conduct this study.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizukami, S., Abe, Y., Tsujimoto, R. et al. Accuracy of spinal curvature assessed by a computer-assisted device and anthropometric indicators in discriminating vertebral fractures among individuals with back pain. Osteoporos Int 25, 1727–1734 (2014). https://doi.org/10.1007/s00198-014-2680-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2680-y

Keywords

Navigation