Skip to main content

Advertisement

Log in

Life-course evidence of birth weight effects on bone mass: systematic review and meta-analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

An Erratum to this article was published on 28 September 2012

Abstract

A systematic review of the literature was performed in July 2011. Original papers based on longitudinal studies measuring spine, femoral neck, or total body bone mass by DXA were included (n = 17). Birth weight was positively associated with bone mass among children. The association was unclear among adolescents and weak among adults. This study aims to evaluate the association between birth weight and bone mass in future ages through a systematic review of literature and meta-analysis. A systematic review of the literature was performed in July 2011 in Medline, Web of Science and LILACS bases using key terms: (“birth size” OR “birth weight” OR birthweight OR prematurity OR premature OR “gestational age”) AND (osteoporosis OR “bone mass” OR “bone density” OR “bone mineral density” OR “bone mineral content” OR “bone area”) AND (longitudinal OR cohort). Original papers based on longitudinal studies measuring lumbar spine, femoral neck or total body bone mass by dual-emission X-ray absorptiometry (DXA) were included. A meta-analysis was performed using birth weight and bone mass density and/or content as continuous variables and adjusted for current height and/or weight. A total of 218 articles were retrieved from which 17 were selected and grouped into three categories according to age: studies with children; with adolescents and young adults, and studies with adults (older than 25). Five papers were included in the meta-analysis. Positive association between birth weight and bone mass was clear among children, unclear among adolescents, and weak among adults. The effect on bone mass content was stronger than those on body mass density regardless of age. Birth weight influences positively bone health in later life. Preventive health policies dealing with early-life modifiable risk factors, as birth weight, should be encouraged to attain an optimal peak bone mass as an strategy to decrease osteoporosis in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barker DJ (1995) The fetal and infant origins of disease. Eur J Clin Invest 25(7):457–463

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJ (2004) The developmental origins of well-being. Philos Trans R Soc Lond B Biol Sci 359(1449):1359–1366

    Article  PubMed  CAS  Google Scholar 

  3. Victora CG, Adair L, Fall C, Hallal PC, Martorell R, Richter L et al (2008) Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371(9609):340–357

    Article  PubMed  CAS  Google Scholar 

  4. Kuh D, Ben-Shlomo Y, Lynch J, Hallqvist J, Power C (2003) Life course epidemiology. J Epidemiol Community Health 57(10):778–783

    Article  PubMed  CAS  Google Scholar 

  5. Baird JBJ, Kurshid MA, Kim M, Harvey N, Dennison E, Cooper C (2011) Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporosis Int 22(5):1323–1334

    Article  CAS  Google Scholar 

  6. Steer CD, Tobias JH (2011) Insights into the programming of bone development from the Avon Longitudinal Study of Parents and Children (ALSPAC). Am J Clin Nutr 94(6 Suppl):1861S–1864S

    Article  PubMed  CAS  Google Scholar 

  7. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311(6998):171–174

    Google Scholar 

  8. Eriksson J, Forsen T, Tuomilehto J, Osmond C, Barker D (2000) Fetal and childhood growth and hypertension in adult life. Hypertension 36(5):790–794

    Article  PubMed  CAS  Google Scholar 

  9. De Stavola BL, dos Santos Silva I, McCormack V, Hardy RJ, Kuh DJ, Wadsworth ME (2004) Childhood growth and breast cancer. Am J Epidemiol 159(7):671–682

    Article  PubMed  Google Scholar 

  10. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115(3):e290–e296

    Article  PubMed  Google Scholar 

  11. Cooper C, Walker-Bone K, Arden N, Dennison E (2000) Novel insights into the pathogenesis of osteoporosis: the role of intrauterine programming. Rheumatol Oxf Engl 39(12):1312–1315

    Article  CAS  Google Scholar 

  12. Romano T, Wark JD, Owens JA, Wlodek ME (2009) Prenatal growth restriction and postnatal growth restriction followed by accelerated growth independently program reduced bone growth and strength. Bone 45(1):132–141

    Article  PubMed  Google Scholar 

  13. Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M (2006) Review: developmental origins of osteoporotic fracture. Osteoporos Int 17(3):337–347

    Article  PubMed  Google Scholar 

  14. Schlussel MM, Dos Santos Vaz J, Kac G (2010) Birth weight and adult bone mass: a systematic literature review. Osteoporos Int 21(12):1981–1991

    Article  PubMed  CAS  Google Scholar 

  15. Ay L, Jaddoe VW, Hofman A, Moll HA, Raat H, Steegers EA et al (2011) Foetal and postnatal growth and bone mass at 6 months: the Generation R Study. Clin Endocrinol (Oxf) 74(2):181–190

    Article  Google Scholar 

  16. de Bono S, Schoenmakers I, Ceesay M, Mendy M, Laskey MA, Cole TJ et al (2010) Birth weight predicts bone size in young adulthood at cortical sites in men and trabecular sites in women from The Gambia. Bone 46(5):1316–1321

    Article  PubMed  Google Scholar 

  17. Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res 57(4):582–586

    Article  PubMed  Google Scholar 

  18. Jensen RB, Vielwerth S, Frystyk J, Veldhuis J, Larsen T, Molgaard C et al (2008) Fetal growth velocity, size in early life and adolescence, and prediction of bone mass: association to the GH-IGF axis. J Bone Miner Res 23(3):439–446

    Article  PubMed  Google Scholar 

  19. Jones G, Dwyer T (2000) Birth weight, birth length, and bone density in prepubertal children: evidence for an association that may be mediated by genetic factors. Calcif Tissue Int 67(4):304–308

    Article  PubMed  CAS  Google Scholar 

  20. Saito T, Nakamura K, Okuda Y, Nashimoto M, Yamamoto N, Yamamoto M (2005) Weight gain in childhood and bone mass in female college students. J Bone Miner Metab 23(1):69–75

    Article  PubMed  Google Scholar 

  21. Yarbrough DE, Barrett-Connor E, Morton DJ (2000) Birth weight as a predictor of adult bone mass in postmenopausal women: the Rancho Bernardo Study. Osteoporos Int 11(7):626–630

    Article  PubMed  CAS  Google Scholar 

  22. Clark EM, Ness A, Tobias JH (2005) Social position affects bone mass in childhood through opposing actions on height and weight. J Bone Miner Res 20(12):2082–2089

    Article  PubMed  Google Scholar 

  23. Leunissen RW, Stijnen T, Boot AM, Hokken-Koelega AC (2008) Influence of birth size and body composition on bone mineral density in early adulthood: the PROGRAM study. Clin Endocrinol (Oxf) 69(3):386–392

    Article  CAS  Google Scholar 

  24. Moraes AB, Zanini RR, Giugliani ER, Riboldi J (2011) Trends in the proportion of low birth weight from 1994 to 2004 in Rio Grande do Sul State, Brazil: a multilevel analysis. Cad Saude Publica 27(2):229–240

    Article  PubMed  Google Scholar 

  25. Cooper C, Cole ZA, Holroyd CR, Earl SC, Harvey NC, Dennison EM et al (2011) Secular trends in the incidence of hip and other osteoporotic fractures. Osteoporos Int 22(5):1277–1288

    Article  PubMed  CAS  Google Scholar 

  26. Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Commun Health 52(6):377–384

    Article  CAS  Google Scholar 

  27. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560

    Article  PubMed  Google Scholar 

  28. Vidulich L, Norris SA, Cameron N, Pettifor JM (2007) Infant programming of bone size and bone mass in 10-year-old black and white South African children. Paediatr Perinat Epidemiol 21(4):354–362

    Article  PubMed  Google Scholar 

  29. Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L et al (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 10(6):940–947

    Article  PubMed  CAS  Google Scholar 

  30. McGuigan FE, Murray L, Gallagher A, Davey-Smith G, Neville CE, Van't Hof R et al (2002) Genetic and environmental determinants of peak bone mass in young men and women. J Bone Miner Res 17(7):1273–1279

    Article  PubMed  CAS  Google Scholar 

  31. Schlussel MM, de Castro JA, Kac G, da Silva AA, Cardoso VC, Bettiol H (2010) Birth weight and bone mass in young adults from Brazil. Bone 46(4):957–963

    Article  PubMed  Google Scholar 

  32. Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56(1):17–21

    Article  PubMed  CAS  Google Scholar 

  33. Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C (2001) Intrauterine programming of adult body composition. J Clin Endocrinol Metab 86(1):267–272

    Article  PubMed  CAS  Google Scholar 

  34. Pearce MS, Birrell FN, Francis RM, Rawlings DJ, Tuck SP, Parker L (2005) Lifecourse study of bone health at age 49–51 years: the Newcastle thousand families cohort study. J Epidemiol Commun Health 59(6):475–480

    Article  Google Scholar 

  35. te Velde SJ, Twisk JW, van Mechelen W, Kemper HC (2004) Birth weight and musculoskeletal health in 36-year-old men and women: results from the Amsterdam Growth and Health Longitudinal Study. Osteoporos Int 15(5):382–388

    Article  Google Scholar 

  36. Grimes DA, Schulz KF (2002) Cohort studies: marching towards outcomes. Lancet 359(9303):341–345

    Article  PubMed  Google Scholar 

  37. Lewiecki EM, Watts NB, McClung MR, Petak SM, Bachrach LK, Shepherd JA et al (2004) Official positions of the international society for clinical densitometry. J Clin Endocrinol Metab 89(8):3651–3655

    Article  PubMed  CAS  Google Scholar 

  38. Dennison E, Mohamed MA, Cooper C (2006) Epidemiology of osteoporosis. Rheum Dis Clin N Am 32(4):617–629

    Article  Google Scholar 

  39. Hasselstrom H, Karlsson KM, Hansen SE, Gronfeldt V, Froberg K, Andersen LB (2006) Sex differences in bone size and bone mineral density exist before puberty. The Copenhagen School Child Intervention Study (CoSCIS). Calcif Tissue Int 79(1):7–14

    Article  PubMed  CAS  Google Scholar 

  40. Baroncelli GI, Saggese G (2000) Critical ages and stages of puberty in the accumulation of spinal and femoral bone mass: the validity of bone mass measurements. Hormone research.54 Suppl 1:2–8

    Google Scholar 

  41. Mussolino ME, Gillum RF (2008) Low bone mineral density and mortality in men and women: the Third National Health and Nutrition Examination Survey linked mortality file. Ann Epidemiol 18(11):847–850

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Martínez-Mesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Mesa, J., Restrepo-Méndez, M.C., González, D.A. et al. Life-course evidence of birth weight effects on bone mass: systematic review and meta-analysis. Osteoporos Int 24, 7–18 (2013). https://doi.org/10.1007/s00198-012-2114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-012-2114-7

Keywords

Navigation