Skip to main content

Advertisement

Log in

Biomaterials and interface with bone

  • Bone Quality Seminars: Bone Fracture Healing and Strengthening
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

In this paper, some examples from the literature or from my own experience will be given to illustrate the influence of surface topography and surface chemistry at the nano- and micro-scale on the cell and tissue response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Zinger O, Anselme K, Denzer A, Habersetzer P, Wieland M, Jeanfils J, Hardouin P, Landolt D (2004) Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale dependant morphology. Biomaterials 25:2695–2711

    Article  PubMed  CAS  Google Scholar 

  2. Yeo IS, Han JS, Yang JH (2008) Biomechanical and histomorphometric study of dental implants with different surface characteristics. J Biomed Mater Res B Appl Biomater 87B:303–311

    Article  CAS  Google Scholar 

  3. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 78A:97–103

    Article  CAS  Google Scholar 

  4. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691

    Article  PubMed  CAS  Google Scholar 

  5. Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S (2009) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92:1218–1224

    Google Scholar 

  6. Bigerelle M, Anselme K, Noël B, Ruderman I, Hardouin P, Iost A (2002) Improvement in the morphology of surfaces for cell adhesion: a new process to double human osteoblast adhesion on Ti-based substrates. Biomaterials 23:1563–1577

    Article  PubMed  CAS  Google Scholar 

  7. Anselme K, Bigerelle M (2006) Modelling approach in cell/material interactions studies. Biomaterials 27:1187–1199

    Article  PubMed  CAS  Google Scholar 

  8. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughness. J Biomed Mater Res 49:155–166

    Article  PubMed  CAS  Google Scholar 

  9. Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, Hildebrand HF, Iost A, Leroy J-M (2000) The relative influence of the topography and chemistry of Ti6Al4V surfaces on osteoblastic cell behaviour. Biomaterials 21:1567–1577

    Article  PubMed  CAS  Google Scholar 

  10. Anselme K, Bigerelle M (2005) Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater 1:211–222

    Article  PubMed  CAS  Google Scholar 

  11. Bigerelle M, Anselme K (2005) A kinetic approach to osteoblast adhesion on biomaterial surface. J Biomed Mater Res 75A:530–540

    Article  CAS  Google Scholar 

  12. Anselme K, Bigerelle M (2006) Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion. J Mater Sci Mater Med 17:471–479

    Article  PubMed  CAS  Google Scholar 

  13. Dalby MJ, Gadegaard N, Tare RS, Andar A, Riehle MO, Herzyk P, Wilkinson CDW, Oreffo ROC (2007) The control of human mesenchymal cell differentiation using nanoscale symetry and disorder. Nat Mater 6:997–1003

    Article  PubMed  CAS  Google Scholar 

  14. Hart A, Gadegaard N, Wilkinson CDW, Oreffo ROC, Dalby MJ (2007) Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. J Mater Sci Mater Med 18:1211–1218

    Article  PubMed  CAS  Google Scholar 

  15. Biggs MJP, Richards RG, Gadegaard N, Wilkinson CDW, Dalby MJ (2007) The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med 18:399–404

    Article  PubMed  CAS  Google Scholar 

  16. Göransson A, Wennerberg A (2005) Bone formation at titanium implants prepared with iso- and anisotropic surfaces of similar roughness: an in vivo study. Clin Implant Dent R 7:17–23

    Article  Google Scholar 

  17. Schwarz F, Wieland M, Schwartz Z, Zhao G, Rupp F, Geis-Gerstorfer J, Schedle A, Broggini N, Bornstein MM, Buser D, Ferguson SJ, Becker J, Boyan BD, Cochran DL (2009) Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. J Biomed Mater Res B Appl Biomater 88B:544–557

    Article  CAS  Google Scholar 

  18. Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ (2005) The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials 26:7579–7586

    Article  PubMed  CAS  Google Scholar 

  19. Sul Y-T, Johansson CB, Kang Y, Jeon D-G, Albrektsson T (2002) Bone reactions to oxidized titanium implants with electrochemical anion sulphuric acid and phosphoric acid incorporation. Clin Implant Dent R 4:78–87

    Article  Google Scholar 

  20. Cristescu R, Mihaiescu DE, Socol G, Stamatin I, Mihailescu IN, Chrisey DB (2004) Disposition of biopolymer thin films by matrix assisted pulsed laser evaporation. Appl Phys A 79:1023–1026

    Article  CAS  Google Scholar 

  21. Mihailescu IN, Torricelli P, Bigi A, Mayer I, Iliescu M, Werckmann J, Socol G, Miroiu F, Cuisinier FJG, Elkaim R, Hildebrand G (2005) Calcium phosphate thin films synthesized by pulsed laser deposition: physico-chemical characterization and in vitro cell response. Appl Surf Sci 248:344–348

    Article  CAS  Google Scholar 

  22. Patz T, Cristescu R, Narayan R, Menegazzo N, Mizaikoff B, Messersmith PB, Stamatin I, Mihailescu IN, Chrisey DB (2005) Processing of mussel-adhesive protein analog copolymer thin films by matrix-assisted pulsed laser evaporation. Appl Surf Sci 248:416–421

    Article  CAS  Google Scholar 

  23. Stamatin L, Cristescu R, Socol G, Moldovan A, Mihaiescu DE, Stamatin I, Mihailescu IN, Chrisey DB (2005) Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Appl Surf Sci 248:422–427

    Article  CAS  Google Scholar 

  24. Nelea V, Jelinek M, Mihailescu IN (2005) Pulsed laser deposition of biomedical materials. vol. 2, Series: Optoelectronic Materials and Devices, EDITURA INOE. p 265

  25. Sima F, Davidson P, Pauthe E, Gallet O, Anselme K, Mihailescu IN (2009) MAPLE synthesized vitronectin structures onto HA monolayers: a synergistic biointerface for medical implants. Oral communication in Photonics, Delphes, Grece, pp 7–9

    Google Scholar 

  26. Peraire C, Airas JL, Bernal D, Pou J, Leon B, Arano A, Roth W (2006) Biological stability and osteoconductivity in rabbit tibia of pulsed laser deposited hydroxylapatite coating. J Biomed Mater Res 77A:370–379

    Article  CAS  Google Scholar 

  27. Durrieu MC (2005) Conception, élaboration et caractérisation de matériaux bioactifs—RGD modified materials: biomaterials for improved cell adhesion. ITBM RBM 26:229–237

    Article  Google Scholar 

  28. Petrie TA, Raynor JE, Reyes CD, Burns KL, Collard DM, Garcia AJ (2008) The effect of integrin specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials 29:2849–2857

    Article  PubMed  CAS  Google Scholar 

  29. Reyes CD, Petrie TA, Burns KL, Schwartz Z, Garcia AJ (2007) Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 28:3228–3235

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The publication of the proceedings of the 5th Bone Quality Seminar 2010 has been made possible through an educational grant from Servier.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anselme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anselme, K. Biomaterials and interface with bone. Osteoporos Int 22, 2037–2042 (2011). https://doi.org/10.1007/s00198-011-1618-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1618-x

Keywords

Navigation