Skip to main content

Advertisement

Log in

Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The roles of Rac1 and Rac2 in regulating osteoclast-mediated bone quality in postmenopausal osteoporosis were evaluated using an ovariectomized murine model. Animals' bone composition and architecture were evaluated. Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to wild-type bones in an ovariectomized model.

Introduction

To determine the roles of the Rho family small GTPases Rac1 and Rac2 in regulating osteoclast-mediated bone quality in a model of postmenopausal osteoporosis.

Methods

Twelve-month-old female mice from three genotypes—wild type (WT), Rac1 null (LysM.Rac1 KO), and Rac2 null (Rac2KO)—were studied in control and ovariectomized groups (mice previously ovariectomized at 4 months of age). Animals were sacrificed at 12 months of age, and the femora and vertebrae were harvested for mechanical testing, bone densitometry, micro-computed tomography, and histomorphometric analyses to evaluate bone mineralization and architecture. The results were compared between groups using ANOVA and LSD post-hoc tests.

Results

We observed that LysM.Rac1 KO mice showed higher vertebral bone mineral density compared to WT in both control and ovariectomized groups. Consistent with this finding, LysM.Rac1 KO vertebrae showed increased resistance to fracture and increased trabecular connectivity compared to WT in both groups. Micro-CT analysis revealed that Rac2KO ovariectomized vertebrae have more trabecular bone compared to WT and LysM.Rac1 KO, but this did not translate into increased fracture resistance.

Conclusion

Our results demonstrate that the deletion of Rac1 increases vertebral bone quality compared to WT bones in a postmenopausal osteoporosis model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parfitt AM (1982) The contribution of bone histology to understanding the pathogenesis and improving the management of osteoporosis. Clin Invest Med 5:163–167

    PubMed  CAS  Google Scholar 

  2. Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  PubMed  CAS  Google Scholar 

  3. Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  PubMed  CAS  Google Scholar 

  4. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med 2:1132–1136

    Article  PubMed  CAS  Google Scholar 

  5. Weitzmann MN, Pacifici R (2006) Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 116:1186–1194

    Article  PubMed  CAS  Google Scholar 

  6. Khosla S, Riggs BL (2005) Pathophysiology of age-related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34:1015–1030, xi

    Article  CAS  Google Scholar 

  7. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  8. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  9. Fenteany G, Glogauer M (2004) Cytoskeletal remodeling in leukocyte function. Curr Opin Hematol 11:15–24

    Article  PubMed  Google Scholar 

  10. Razzouk S, Lieberherr M, Cournot G (1999) Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur J Cell Biol 78:249–255

    PubMed  CAS  Google Scholar 

  11. Fukuda A, Hikita A, Wakeyama H, Akiyama T, Oda H, Nakamura K, Tanaka S (2005) Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. J Bone Miner Res 20:2245–2253

    Article  PubMed  CAS  Google Scholar 

  12. Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M (2008) Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 23:260–270

    Article  PubMed  CAS  Google Scholar 

  13. Sun CX, Magalhaes MA, Glogauer M (2007) Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179:239–245

    Article  PubMed  CAS  Google Scholar 

  14. Sun CX, Downey GP, Zhu F, Koh AL, Thang H, Glogauer M (2004) Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104:3758–3765

    Article  PubMed  CAS  Google Scholar 

  15. Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B, Spaetti A, Pollock JD, Borneo JB, Bradford GB, Atkinson SJ, Dinauer MC, Williams DA (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10:183–196

    Article  PubMed  CAS  Google Scholar 

  16. Glogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I, Marks P, Downey GP, Dinauer M, Kwiatkowski DJ (2003) Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 170:5652–5657

    PubMed  CAS  Google Scholar 

  17. Wang Y, Belsham DD, Glogauer M (2009) Rac1 and Rac2 in osteoclastogenesis: a cell immortalization model. Calcif Tissue Int 85:257–266

    Article  PubMed  CAS  Google Scholar 

  18. Mousny M, Banse X, Wise L, Everett ET, Hancock R, Vieth R, Devogelaer JP, Grynpas MD (2006) The genetic influence on bone susceptibility to fluoride. Bone 39:1283–1289

    Article  PubMed  CAS  Google Scholar 

  19. Turner CH, Hinckley WR, Wilson ME, Zhang W, Dunipace AJ (2001) Combined effects of diets with reduced calcium and phosphate and increased fluoride intake on vertebral bone strength and histology in rats. Calcif Tissue Int 69:51–57

    Article  PubMed  CAS  Google Scholar 

  20. Holmes C, Khan TS, Owen C, Ciliberti N, Grynpas MD, Stanford WL (2007) Longitudinal analysis of mesenchymal progenitors and bone quality in the stem cell antigen-1-null osteoporotic mouse. J Bone Miner Res 22:1373–1386

    Article  PubMed  Google Scholar 

  21. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  22. Boyde A, Jones SJ (1983) Back-scattered electron imaging of skeletal tissues. Metab Bone Dis Relat Res 5:145–150

    Article  PubMed  Google Scholar 

  23. Lundon K, Dumitriu M, Grynpas M (1994) The long-term effect of ovariectomy on the quality and quantity of cancellous bone in young macaques. Bone Miner 24:135–149

    Article  PubMed  CAS  Google Scholar 

  24. Mellish RW, Ferguson-Pell MW, Cochran GV, Lindsay R, Dempster DW (1991) A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696

    Article  PubMed  CAS  Google Scholar 

  25. Jilka RL, Takahashi K, Munshi M, Williams DC, Roberson PK, Manolagas SC (1998) Loss of estrogen upregulates osteoblastogenesis in the murine bone marrow. Evidence for autonomy from factors released during bone resorption. J Clin Invest 101:1942–1950

    Article  PubMed  CAS  Google Scholar 

  26. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  PubMed  CAS  Google Scholar 

  27. Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409

    Article  PubMed  CAS  Google Scholar 

  28. Raisz LG (2005) Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 115:3318–3325

    Article  PubMed  CAS  Google Scholar 

  29. Guo F, Cancelas JA, Hildeman D, Williams DA, Zheng Y (2008) Rac GTPase isoforms Rac1 and Rac2 play a redundant and crucial role in T-cell development. Blood 112:1767–1775

    Article  PubMed  CAS  Google Scholar 

  30. Wheeler AP, Wells CM, Smith SD, Vega FM, Henderson RB, Tybulewicz VL, Ridley AJ (2006) Rac1 and Rac2 regulate macrophage morphology but are not essential for migration. J Cell Sci 119:2749–2757

    Article  PubMed  CAS  Google Scholar 

  31. Bain SD, Bailey MC, Celino DL, Lantry MM, Edwards MW (1993) High-dose estrogen inhibits bone resorption and stimulates bone formation in the ovariectomized mouse. J Bone Miner Res 8:435–442

    Article  PubMed  CAS  Google Scholar 

  32. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson KA, Melton LJ 3rd (1982) Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 70:716–723

    Article  PubMed  CAS  Google Scholar 

  33. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    PubMed  CAS  Google Scholar 

  34. Lee NK, Choi HK, Kim DK, Lee SY (2006) Rac1 GTPase regulates osteoclast differentiation through TRANCE-induced NF-kappaB activation. Mol Cell Biochem 281:55–61

    Article  PubMed  CAS  Google Scholar 

  35. Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170:427–435

    Article  PubMed  CAS  Google Scholar 

  36. Chambers TJ (2000) Regulation of the differentiation and function of osteoclasts. J Pathol 192:4–13

    Article  PubMed  CAS  Google Scholar 

  37. Garimella R, Tague SE, Zhang J, Belibi F, Nahar N, Sun BH, Insogna K, Wang J, Anderson HC (2008) Expression and synthesis of bone morphogenetic proteins by osteoclasts: a possible path to anabolic bone remodeling. J Histochem Cytochem 56:569–577

    Article  PubMed  CAS  Google Scholar 

  38. Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 276:8836–8840

    Article  PubMed  CAS  Google Scholar 

  39. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  PubMed  Google Scholar 

  40. Lochmuller EM, Kristin J, Matsuura M, Kuhn V, Hudelmaier M, Link TM, Eckstein F (2008) Measurement of trabecular bone microstructure does not improve prediction of mechanical failure loads at the distal radius compared with bone mass alone. Calcif Tissue Int 83:293–299

    Article  PubMed  Google Scholar 

  41. Lochmuller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638

    Article  PubMed  Google Scholar 

  42. Kreider JM, Goldstein SA (2009) Trabecular bone mechanical properties in patients with fragility fractures. Clin Orthop Relat Res 467:1955–1963

    Article  PubMed  Google Scholar 

Download references

Aknowledgments

This work is supported by Canadian Institute of Health Research (CIHR) Operating Grant. M.G. is supported by a CIHR New Investigator Award.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Glogauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magalhaes, J.K.R.S., Grynpas, M.D., Willett, T.L. et al. Deleting Rac1 improves vertebral bone quality and resistance to fracture in a murine ovariectomy model. Osteoporos Int 22, 1481–1492 (2011). https://doi.org/10.1007/s00198-010-1355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-010-1355-6

Keywords

Navigation