Skip to main content

Advertisement

Log in

Significant differences in UK and US female bone density reference ranges

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In the United Kingdom (UK), T- and Z-scores are usually calculated using reference ranges derived from United States (US) populations. In the UK arm of a recent randomised trial (International Breast Cancer Intervention Study II (IBIS-II)), substantially, fewer women than expected were recruited into the osteopenic \( \left( { - {2}.{5} < {\hbox{T - score}} < - {1}.0} \right) \) and osteoporotic (T-score <−2.5) arms of the study. The comparison with data from two independent studies showed that UK women aged >45 years with a typical body mass index of 28 kg m−2 have spine and hip bone mineral density (BMD) 0.6 standard deviation higher than their US counterparts.

Introduction

Dual energy X-ray absorptiometry (DXA) is widely used for the diagnosis of osteoporosis and to investigate the effect of pharmacological treatments on BMD. In both routine and research settings, it is important that DXA results are correctly interpreted.

Methods

T- and Z-scores for the first 650 UK Caucasian women enrolled in the IBIS-II study were compared with data from two independent studies of unrelated, unselected UK Caucasian women: (1) 2,382 women aged 18 to 79 recruited to the Twins UK Adult Twin Registry; (2) 431 women aged 21 to 84 with no risk factors for osteoporosis recruited at Guy's Hospital. All DXA measurements were performed on Hologic densitometers. Subjects were divided into six age bands, and T- and Z-scores were calculated using the manufacturer's US reference range for the spine and the National Health and Nutrition Examination Survey III reference range for the femoral neck and total hip.

Results

The overall mean Z-scores for the IBIS-II, Twin, and Guy's groups were: spine: +0.61, +0.29, +0.33; femoral neck: +0.42, +0.36, +0.45; total hip: +0.65, +0.38, +0.39 (all p < 0.001 compared with the expected value of 0). The mean body weight of subjects in the three studies was 74.4, 65.5, and 65.4 kg, respectively. Analysis revealed a highly significant relationship between Z-score and weight at each BMD site with a slope of 0.03 kg−1.

Conclusions

In general, US spine and hip reference ranges are not suitable for the calculation of Z-scores in UK women. For some research study designs, the differences may significantly influence the pattern of subject recruitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanis JA, McCloskey EV, Johansson H, Oden A (2008) Review: a reference standard for the description of osteoporosis. Bone 42:467–475

    Article  CAS  PubMed  Google Scholar 

  2. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of the effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541

    Article  CAS  PubMed  Google Scholar 

  3. Reid IR, Brown JP, Burckhardt P, Horowitz Z, Richardson P, Trechsel U, Widmer A, Devogelaer JP, Kaufman JM, Jaeger P, Body JJ, Brandi ML, Broell J, Di Micco R, Genazzani AR, Felsenberg D, Happ J, Hooper MJ, Ittner J, Leb G, Mallmin H, Murray T, Ortolani S, Rubinacci A, Saaf M, Samsioe G, Verbruggen L, Meunier PJ (2002) Intravenous zoledronic acid in postmenopausal women with low bone density. N Engl J Med 346:653–661

    Article  CAS  PubMed  Google Scholar 

  4. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster JY (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  CAS  PubMed  Google Scholar 

  5. Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, Blosch CM, Mathisen AL, Morris SA, Marriott TB (2007) Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomised trial. Ann Intern Med 146:326–339

    PubMed  Google Scholar 

  6. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  CAS  PubMed  Google Scholar 

  7. Blake GM, Fogelman I (2007) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517

    Article  PubMed  Google Scholar 

  8. Kelly TL (1990) Bone mineral density reference databases for American men and women. J Bone Miner Res 5:249

    Google Scholar 

  9. Flicker L, Green R, Kaymakci B, Lichtenstein M, Buirski G, Wark JD (1995) Do Australian women have greater spinal bone density than North American women? Osteoporos Int 5:63–65

    Article  CAS  PubMed  Google Scholar 

  10. Looker AC, Wahner HW, Dunn WL et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489

    Article  CAS  PubMed  Google Scholar 

  11. Singh S, Cuzick J, Edwards R, Blake G, Truscott J, Coleman J, Eastell R, Howell A (2007) Effect of anastrazole on bone mineral density after one year of treatment: results from the bone sub-study of the International Breast Cancer Intervention Study (IBIS-II). Abstracts from the 30th Annual San Antonio Breast Cancer Symposium Dec 13-16 2007. Available online at http://www.sabcs.org/EnduringMaterials/ Accessed 23 October 2009.

  12. Spector TD, Williams FMK (2006) The UK adult twin registry (TwinsUK). Twin Res Hum Genet 9:899–906

    Article  PubMed  Google Scholar 

  13. Frost ML, Blake GM, Fogelman I (2000) Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound? Osteoporos Int 11:321–330

    Article  CAS  PubMed  Google Scholar 

  14. Eastell R, Adams JE, Coleman RE, Howell A, Hannon RA, Cuzick J, Mackey JR, Beckmann MW, Clack G (2008) Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol 26:1051–1057

    Article  CAS  PubMed  Google Scholar 

  15. Andrew T, Hart DJ, Snieder H, de Lange M, Spector TD, MacGregor AJ (2001) Are twins and singletons comparable? A study of disease-related and lifestyle characteristics in adult women. Twin Res 4:464–477

    Article  CAS  PubMed  Google Scholar 

  16. Patel R, Blake GM, Rymer J, Fogelman I (2000) Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women. Osteoporos Int 11:68–75

    Article  CAS  PubMed  Google Scholar 

  17. Zhai G, Andrew T, Kato BS, Blake GM, Spector TD (2009) Genetic and environmental determinants on bone loss in postmenopausal Caucasian women: a 14-year longitudinal twin study. Osteporosis Int 20:949–953

    Article  CAS  Google Scholar 

  18. Health Survey for England 2004 – updating of trend tables to include 2004 data. The Health and Social Care Information Centre, 2005. Available online at: http://www.ic.nhs.uk/statistics-and-data-collections/health-and-lifestyles-related-surveys/health-survey-for-england/health-survey-for-england-2004-updating-of-trend-tables-to-include-2004-data (accessed 23 October 2009)

  19. McDowell MA, Fryar CD, Ogden CL (2009) Anthropometric reference data for children and adults: United States, 1988-1994. National Center for Health Statistics. Vital Health Stat, Series 11, No. 249

  20. Hanson J (1997) Standardization of femur BMD. J Bone Miner Res 12:1316–1317

    Article  CAS  PubMed  Google Scholar 

  21. Blake GM, Chinn DJ, Steel SA, Patel R, Panayiotou E, Thorpe J, Fordham JN (2005) A list of device specific thresholds for the clinical interpretation of peripheral X-ray absorptiometry examinations. Osteoporos Int 16:2149–2156

    Article  CAS  PubMed  Google Scholar 

  22. Faulkner KG, Von Stetton E, Miller P (1999) Discordance in patient classification using T-scores. J Clin Densitom 2:343–350

    Article  CAS  PubMed  Google Scholar 

  23. Altman DG (1991) Practical statistics for medical research. Chapman Hall, London

    Google Scholar 

  24. Cauley JA, Lucas FL, Kuller LH, Vogt MT, Browner WS, Cummings SR (1996) Bone mineral density and risk of breast cancer in older women: the study of osteoporotic fractures. JAMA 276:1404–1408

    Article  CAS  PubMed  Google Scholar 

  25. Stewart A, Kumar V, Torgerson DJ, Fraser WD, Gilbert FJ, Reid DM (2005) Axial BMD, change in BMD and bone turnover do not predict breast cancer incidence in early postmenopausal women. Osteoporos Int 16:1627–1632

    Article  CAS  PubMed  Google Scholar 

  26. Faulkner KG, Roberts LA, McClung MR (1996) Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int 6:432–436

    Article  CAS  PubMed  Google Scholar 

  27. De Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  28. Petley GW, Cotton AM, Murrills AJ, Taylor PA, Cooper C, Cawley MI, Wilkin TJ (1996) Reference ranges of bone mineral density for women in southern England: the impact of local data on the diagnosis of osteoporosis. Br J Radiol 69:655–660

    Article  CAS  PubMed  Google Scholar 

  29. Holt G, Khaw KT, Reid DM, Compston JE, Bhalla A, Woolf AD, Crabtree NJ, Dalzell N, Wardley-Smith B, Lunt M, Reeve J (2002) Prevalence of osteoporotic bone mineral density at the hip in Britain differs substantially from the US over 50 years of age: implications for clinical densitometry. Br J Radiol 75:736–742

    CAS  PubMed  Google Scholar 

  30. Lunt M, Felsenberg D, Adams J, Benevolenskaya L, Cannata J, Dequeker J, Dodenhof C, Falch JA, Johnell O, Khaw KT, Masaryk P, Pols H, Poor G, Reid D, Scheidt-Nave C, Weber K, Silman AJ, Reeve J (1997) Population-based geographic variations in DXA bone density in Europe: the EVOS Study. Osteoporos Int 7:175–189

    Article  CAS  PubMed  Google Scholar 

  31. Kaptoge S, da Silva JA, Brixen K, Reid DM, Kröger H, Nielsen TL, Andersen M, Hagen C, Lorenc R, Boonen S, de Vernejoul MC, Stepan JJ, Adams J, Kaufman JM, Reeve J (2008) Geographical variation in DXA bone mineral density in young European men and women. Results from the Network in Europe on Male Osteoporosis (NEMO) study. Bone 43:332–339

    Article  PubMed  Google Scholar 

  32. Henry MJ, Pasco JA, Korn S, Gibson JE, Kotowicz MA, Nicholson GC (2009) Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study. Osteoporos Int. Published online 26 Aug 2009

  33. Carey JJ, Delaney MF, Love TE, Richmond BJ, Cromer BA, Miller PD, Manilla-McIntosh M, Lewis SA, Thomas CL, Licata AA (2007) DXA-generated Z-scores and T-scores may differ substantially and significantly in young adults. J Clinical Densitom 10:351–358

    Article  Google Scholar 

  34. FRAX-WHO Fracture Risk Assessment Tool. Available online at http://www.shef.ac.uk/FRAX. Accessed 23 October 2009

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to G. M. Blake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noon, E., Singh, S., Cuzick, J. et al. Significant differences in UK and US female bone density reference ranges. Osteoporos Int 21, 1871–1880 (2010). https://doi.org/10.1007/s00198-009-1153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1153-1

Keywords

Navigation