Skip to main content

Advertisement

Log in

Ten-year fracture probability identifies women who will benefit from clodronate therapy—additional results from a double-blind, placebo-controlled randomised study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Fracture risk prediction can be enhanced by the concurrent assessment of other clinical risk factors. This study demonstrates that the estimation of an individual’s 10-year probability of fracture by the FRAX® algorithm identifies patients at high risk of fracture who will respond to bisphosphonate therapy.

Introduction

Treatments for osteoporosis are targeted largely to patients with low bone density (BMD) or a prior fragility fracture. Fracture risk prediction can be enhanced by the concurrent assessment of other clinical risk factors, but it is important to determine whether the risk so identified can be reduced by intervention. We determined the effect of a bisphosphonate on fracture rates when risk was calculated using a new risk algorithm (FRAX®).

Methods

Women aged 75 years or more were recruited to a randomised, double-blind controlled trial of 800 mg oral clodronate (Bonefos®) daily over 3 years. Baseline clinical risk factors were entered in the FRAX® model to compute the 10-year probability of major osteoporotic fractures with or without input of femoral neck BMD. The interaction between fracture probability and treatment efficacy was examined by Poisson regression.

Results

In 3,974 women, the interaction between fracture probability and treatment efficacy was significant when probability was assessed without BMD (p = 0.043), but not when BMD was included (p = 0.10). Efficacy was more evident in those deemed at highest risk. For example women lying at the 75th percentile of fracture probability in the absence of BMD (10-year probability 24%) treatment reduced fracture risk by 27% (HR 0.73, 95%CI 0.58–0.92). In those with a fracture probability of 30% (90th percentile), the fracture risk reduction was 38% (HR 0.62, 0.46–0.84).

Conclusions

The estimation of an individual’s 10-year probability of fracture by the FRAX® algorithm identifies patients at high risk of fracture who will respond to bisphosphonate therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCloskey E et al (2004) Clodronate reduces vertebral fracture risk in women with postmenopausal or secondary osteoporosis: results of a double-blind, placebo-controlled 3-year study. J Bone Miner Res 19(5):728–736

    Article  PubMed  CAS  Google Scholar 

  2. Delmas PD et al (2004) Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE Study. Osteoporos Int 15(10):792–798

    Article  PubMed  CAS  Google Scholar 

  3. Harris ST et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 282(14):1344–1352

    Article  PubMed  CAS  Google Scholar 

  4. Black DM et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–1541

    Article  PubMed  CAS  Google Scholar 

  5. Cummings SR et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280(24):2077–2082

    Article  PubMed  CAS  Google Scholar 

  6. Reginster J et al (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 11(1):83–91

    Article  PubMed  CAS  Google Scholar 

  7. McClung MR et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344(5):333–340

    Article  PubMed  CAS  Google Scholar 

  8. Siris ES et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286(22):2815–2822

    Article  PubMed  CAS  Google Scholar 

  9. Wainwright SA et al (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90(5):2787–2793

    Article  PubMed  CAS  Google Scholar 

  10. Black DM et al (2001) An assessment tool for predicting fracture risk in postmenopausal women. Osteoporos Int 12(7):519–528

    Article  PubMed  CAS  Google Scholar 

  11. Dargent-Molina P et al (1996) Fall-related factors and risk of hip fracture: the EPIDOS Prospective Study. Lancet 348(9021):145–149

    Article  PubMed  CAS  Google Scholar 

  12. Miller PD et al (2004) An approach to identifying osteopenic women at increased short-term risk of fracture. Arch Intern Med 164(10):1113–1120

    Article  PubMed  Google Scholar 

  13. Kanis JA et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046

    Article  PubMed  CAS  Google Scholar 

  14. McCloskey EV et al (2007) Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J Bone Miner Res 22(1):135–141

    Article  PubMed  CAS  Google Scholar 

  15. Kanis JA et al (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12(5):417–427

    Article  PubMed  CAS  Google Scholar 

  16. Breslow NE, Day NE (1987) Statistical methods in cancer research, vol II. IARC Scientific Publications No 32, Lyon, pp 131–135

  17. (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843, pp 1–129

  18. Kanis JA et al (1997) Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int 7(4):390–406

    Article  PubMed  CAS  Google Scholar 

  19. Nelson HD et al (2002) Screening for postmenopausal osteoporosis: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 137(6):529–541

    PubMed  Google Scholar 

  20. Trivedi DP, Doll R, Khaw KT (2003) Effect of four monthly oral vitamin D3 (cholecalciferol) supplementation on fractures and mortality in men and women living in the community: randomised double blind controlled trial. BMJ 326(7387):469

    Article  PubMed  CAS  Google Scholar 

  21. Rossouw JE et al (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative Randomized Controlled Trial. JAMA 288(3):321–333

    Article  PubMed  CAS  Google Scholar 

  22. Kanis JA et al (2003) Effect of raloxifene on the risk of new vertebral fracture in postmenopausal women with osteopenia or osteoporosis: a reanalysis of the Multiple Outcomes of Raloxifene Evaluation Trial. Bone 33(3):293–300

    Article  PubMed  CAS  Google Scholar 

  23. Marcus R et al (2003) The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res 18(1):18–23

    Article  PubMed  CAS  Google Scholar 

  24. Watts NB et al (2003) Risedronate prevents new vertebral fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 88(2):542–549

    Article  PubMed  CAS  Google Scholar 

  25. Dargent-Molina P et al (2002) Use of clinical risk factors in elderly women with low bone mineral density to identify women at higher risk of hip fracture: The EPIDOS Prospective Study. Osteoporos Int 13(7):593–599

    Article  PubMed  CAS  Google Scholar 

  26. Leslie WD et al (2002) Bone mineral density testing in healthy postmenopausal women. The role of clinical risk factor assessment in determining fracture risk. J Clin Densitom 5(2):117–130

    Article  PubMed  Google Scholar 

  27. McGrother CW et al (2002) Evaluation of a hip fracture risk score for assessing elderly women: the Melton Osteoporotic Fracture (MOF) Study. Osteoporos Int 13(1):89–96

    Article  PubMed  CAS  Google Scholar 

  28. De Laet C et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16(11):1330–1338

    Article  PubMed  Google Scholar 

  29. Johnell O et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–1194

    Article  PubMed  Google Scholar 

  30. Kanis JA et al (2004) Alcohol intake as a risk factor for fracture. Osteoporos Int 16:737–742

    Article  PubMed  Google Scholar 

  31. Kanis JA et al (2005) A meta-analysis of milk intake and fracture risk: low utility for case finding. Osteoporos Int 16:799–804

    Article  PubMed  Google Scholar 

  32. Kanis JA et al (2004) A family history of fracture and fracture risk: a meta-analysis. Bone 35(5):1029–1037

    Article  PubMed  CAS  Google Scholar 

  33. Kanis JA et al (2004) A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res 19(6):893–899

    Article  PubMed  Google Scholar 

  34. Kanis JA et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35(2):375–382

    Article  PubMed  CAS  Google Scholar 

  35. Kanis JA et al (2005) Smoking and fracture risk: a meta-analysis. Osteoporos Int 16:155–162

    Article  PubMed  CAS  Google Scholar 

  36. Kanis JA; on behalf of the WSG (2007) Assessment of osteoporosis at a primary health care level. WHO Collaborating Centre for Metabolic Bone Diseases, Sheffield

  37. Johansson H et al (2004) Optimization of BMD measurements to identify high risk groups for treatment—a test analysis. J Bone Miner Res 19(6):906–913

    Article  PubMed  Google Scholar 

  38. Bauer DC et al (2006) Pretreatment levels of bone turnover and the antifracture efficacy of alendronate: the fracture intervention trial. J Bone Miner Res 21(2):292–299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Medical Research Council, London, UK and Bayer Schering Pharma Oy, Helsinki, Finland for funding the original study from which this analysis is derived.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. McCloskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCloskey, E.V., Johansson, H., Oden, A. et al. Ten-year fracture probability identifies women who will benefit from clodronate therapy—additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int 20, 811–817 (2009). https://doi.org/10.1007/s00198-008-0786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0786-9

Keywords

Navigation