Skip to main content
Log in

Tibial geometry is associated with failure load ex vivo: a MRI, pQCT and DXA study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We studied the relations between bone geometry and density and the mechanical properties of human cadaveric tibiae. Bone geometry, assessed by MRI and pQCT, and bone density, assessed by DXA, were significantly associated with bone’s mechanical properties. However, cortical density assessed by pQCT was not associated with mechanical properties.

Introduction

The primary objective of this study was to determine the contribution of cross-sectional geometry (by MRI and pQCT) and density (by pQCT and DXA) to mechanical properties of the human cadaveric tibia.

Methods

We assessed 20 human cadaveric tibiae. Bone cross-sectional geometry variables (total area, cortical area, and section modulus) were measured with MRI and pQCT. Cortical density and areal BMD were measured with pQCT and DXA, respectively. The specimens were tested to failure in a four-point bending apparatus. Coefficients of determination between imaging variables of interest and mechanical properties were determined.

Results

Cross-sectional geometry measurements from MRI and pQCT were strongly correlated with bone mechanical properties (r2 range from 0.55 to 0.85). Bone cross-sectional geometry measured by MRI explained a proportion of variance in mechanical properties similar to that explained by pQCT bone cross-sectional geometry measurements and DXA measurements.

Conclusions

We found that there was a close association between geometry and mechanical properties regardless of the imaging modality (MRI or pQCT) used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hudelmaier M, Kuhn V, Lochmüller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15:375–381

    Article  PubMed  CAS  Google Scholar 

  2. Lochmüller EM, Zeller JB, Kaiser D, Eckstein F, Landgraf J, Putz R, Steldinger R (1998) Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos Int 8:591–598

    Article  PubMed  Google Scholar 

  3. Bouxsein ML, Coan BS, Lee SC (1999) Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 25:49–54

    Article  PubMed  CAS  Google Scholar 

  4. Sievanen H (2000) A physical model for dual-energy X-ray absorptiometry-derived bone mineral density. Invest Radiol 35:325−330

    Article  PubMed  CAS  Google Scholar 

  5. Bolotin HH, Sievanen H, Grashuis JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18:1020–1027

    Article  PubMed  CAS  Google Scholar 

  6. Delmas PD, Seeman E (2004) Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 34:599–604

    Article  PubMed  CAS  Google Scholar 

  7. Bolotin HH (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone 28:548–555

    Article  PubMed  CAS  Google Scholar 

  8. Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276

    Article  PubMed  CAS  Google Scholar 

  9. Wehrli FW, Hilaire L, Fernandez-Seara M, Gomberg BR, Song HK, Zemel B, Loh L, Snyder PJ (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–2273

    Article  PubMed  Google Scholar 

  10. Wehrli FW, Leonard MB, Saha PK, Gomberg BR (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20:83–89

    Article  PubMed  Google Scholar 

  11. Gomberg BR, Saha PK, Wehrli FW (2005) Method for cortical bone structural analysis from magnetic resonance images. Acad Radiol 12:1320–1332

    Article  PubMed  Google Scholar 

  12. Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29:388–392

    Article  PubMed  CAS  Google Scholar 

  13. Hogler W, Blimkie CJ, Cowell CT, Kemp AF, Briody J, Wiebe P, Farpour-Lambert N, Duncan CS, Woodhead HJ (2003) A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 33:771–778

    Article  PubMed  CAS  Google Scholar 

  14. Woodhead HJ, Kemp AF, Blimkie CJR, Briody JN, Duncan CS, Thompson M, Lam A, Howman-Giles R, Cowell CT (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16:2251–2259

    Article  PubMed  CAS  Google Scholar 

  15. Rauch F, Schoenau E (2001) Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res 16:597–604

    Article  PubMed  CAS  Google Scholar 

  16. Russo CR, Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Volpato S, Guralnik JM, Harris T, Ferrucci L (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 14:531–538

    Article  PubMed  CAS  Google Scholar 

  17. Kontulainen SA, Macdonald HM, Khan KM, McKay HA (2005) Examining bone surfaces across puberty: a 20-month pQCT trial. J Bone Miner Res 20:1202–1207

    Article  PubMed  Google Scholar 

  18. Moyer-Mileur LJ, Xie B, Ball SD, Pratt T (2003) Bone mass and density response to a 12-month trial of calcium and vitamin D supplement in preadolescent girls. J Musculoskelet Neuronal Interact 3:63–70

    PubMed  CAS  Google Scholar 

  19. Chan K, Qin L, Lau M, Woo J, Au S, Choy W, Lee K, Lee S (2004) A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil 85:717–722

    Article  PubMed  Google Scholar 

  20. Liu-Ambrose TY, Khan KM, Eng JJ, Heinonen A, McKay HA (2004) Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom 7:390–398

    Article  PubMed  Google Scholar 

  21. Manske SL, Kontulainen S, Liu D, McKay HA (Submitted) Are MRI-derived measures of cortical bone geometry reliable and accurate?: Comparison with bone histomorphometry in the human distal tibia

  22. Kontulainen S, Liu D, Manske SL, Jamieson M, Sievanen H, McKay HA (2007) Analysing cortical bone cross-sectional geometry by peripheral QCT: Comparison with bone histomorphometry. J Clin Densitom (in press)

  23. Hologic (1996) Hologic Model QDR-4500 Users guide. MA, Waltham

    Google Scholar 

  24. American Society for Testing and Materials (1989) Standard test methods for flexural properties of un-reinforced and reinforced plastics and electrical insulating materials

  25. Cristofolini L, Viceconti M (2000) Mechanical validation of whole bone composite tibia models. J Biomech 33:279–288

    Article  PubMed  CAS  Google Scholar 

  26. Heiner AD, Brown TD (2001) Structural properties of a new design of composite replicate femurs and tibias. J Biomech 34:773–781

    Article  PubMed  CAS  Google Scholar 

  27. An YH, Draughn RA (1999) Mechanical testing of bone and the bone-implant interface. CRC Press LLC, Boca Raton, Florida, USA

    Google Scholar 

  28. Lochmüller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638

    Article  PubMed  Google Scholar 

  29. Manske SL, Liu-Ambrose T, de Bakker PM, Liu D, Kontulainen S, Guy P, Oxland TR, McKay HA (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:1539–1545

    Article  PubMed  CAS  Google Scholar 

  30. Levenston ME, Beaupre GS, van der Meulen MC (1994) Improved method for analysis of whole bone torsion tests. J Bone Miner Res 9:1459–1465

    Article  PubMed  CAS  Google Scholar 

  31. Bousson V, Bergot C, Meunier A, Barbot F, Parlier-Cuau C, Laval-Jeantet AM, Laredo JD (2000) CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity. Radiology 217:179–187

    PubMed  CAS  Google Scholar 

  32. Currey JD (1999) What determines the bending strength of compact bone? The Journal of experimental biology 202:2495–2503

    PubMed  CAS  Google Scholar 

  33. Lochmüller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207–216

    Article  PubMed  Google Scholar 

  34. Eckstein F, Kuhn V, Lochmüller EM (2004) Strength prediction of the distal radius by bone densitometry-evaluation using biomechanical tests. Ann Biomed Eng 32:487–503

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sylvia Renneberg and Jennifer McCord for conducting the MRI measurements. We also thank Dr. David ML Cooper for his review of the manuscript. Financial support to conduct the study was provided by the Canadian Institutes of Health Research, Natural Science and Engineering Council of Canada and the Michael Smith Foundation for Health Research to whom we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. McKay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Manske, S.L., Kontulainen, S.A. et al. Tibial geometry is associated with failure load ex vivo: a MRI, pQCT and DXA study. Osteoporos Int 18, 991–997 (2007). https://doi.org/10.1007/s00198-007-0325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-007-0325-0

Keywords

Navigation