Skip to main content
Log in

A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

The prompt oblique detonation wave (PODW) sustained by a finite-length wedge is investigated by numerical simulation. The numerical results show that it is possible to stabilize a PODW on a finite-length wedge shorter than the induction length of the mixture behind the inert shock by numerically imposing a premature initiation of combustion in the initial flow field. The fully coupled and the partially coupled PODWs are observed in the numerical results. For the fully coupled PODW, the upstream facing transverse waves (UF TW) are swept downstream and consequently a fully coupled PODW can persist. For the partially coupled PODW, the UF TWs propagate upstream and the downstream facing transverse waves are weakened by the expansion wave emanating from the corner. As a result, a partially coupled PODW forms. Further, it is found that the stability of the partially coupled PODW is weak. The configuration of the partially coupled PODW can be altered by local explosions occurring downstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ashford, S.A., Emanuel, G.: Oblique detonation wave engine performance prediction. J. Propuls. Power 12(2), 322–327 (1996)

    Article  Google Scholar 

  2. Hertzberg, A., Bruckner, A.P., Bogdanoff, D.W.: Ram accelerator: a new chemical method for accelerating projectile to ultrahigh velocities. AIAA J. 26(2), 195–203 (1988)

    Article  Google Scholar 

  3. Fugueira da Silva, L.F., Deshaies, B.: Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combust. Flame. 121, 152–166 (2000)

    Article  Google Scholar 

  4. Verreault, J., Higgins, A.J.: Initiation of detonation by conical projectiles. Proc. Combust. Inst. 33, 2311–2318 (2011)

    Article  Google Scholar 

  5. Lefebvre, M.H., Fujiwara, T.: Numerical modeling of combustion processes induced by a supersonic conical blunt body. Combust. Flame. 100, 85–93 (1995)

    Article  Google Scholar 

  6. Liu, Y., Dan, W., Yao, S.-B., Wang, J.-P.: Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combust. Sci. Tech. 187(6), 843–856 (2015)

  7. Li, C., Kailasanath, K., Oran, E.S.: Detonation structures behind oblique shocks. Phys. Fluids. 6, 1600–1611 (1994)

    Article  MATH  Google Scholar 

  8. Liu, Y., Liu, Y.S., Wu, D., Wang, J.P.: Structure of an oblique detonation wave induced by a wedge. Shock Waves (2016). doi:10.1007/s00193-015-0600-5 (in press)

  9. Papalexandris, M.V.: A numerical study of wedge-induced detonations. Combust. Flame. 120, 526–538 (2000)

    Article  Google Scholar 

  10. Teng, H.-H., Jiang, Z.-L.: On the transition pattern of the oblique detonation structure. J. Fluid Mech. 713, 659–669 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Teng, H.-H., Jiang, Z.-L., Ng, H.D.: Numerical study on unstable surfaces of oblique detonations. J. Fluid Mech. 744, 111–128 (2014)

    Article  MathSciNet  Google Scholar 

  12. Choi, J.-Y., Kim, D.-W., Jeung, I.-S., Ma, F., Yang, V.: Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst. 31(2), 2473–2480 (2007)

    Article  Google Scholar 

  13. Teng, H.-H., Ng, H.D., Li, K., Luo, C.-T., Jiang, Z.-L.: Evolution of cellular structures on oblique detonation surfaces. Combust. Flame. 162, 470–477 (2015)

    Article  Google Scholar 

  14. Verreault, J., Higgins, A.J., Stowe, R.A.: Formation of transverse waves in oblique detonations. Proc. Combust. Inst. 34(2), 1913–1920 (2013)

    Article  Google Scholar 

  15. Gui, M.-Y., Fan, B.-C., Dong, G.: Periodic oscillation and fine structure of wedge-induced oblique detonation waves. Acta Mech. Sin. 27, 922–928 (2011)

  16. Walter, M.A.T., Figueira da Silva, L.F.: Numerical study of detonation stabilization by finite length wedges. AIAA J. 44(2), 353–361 (2006)

    Article  Google Scholar 

  17. Pimentel, C.A.R., Azevedo, J.L.F., Figueira da Silva, L.F.: Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions. J. Braz. Soc. Mechan. Sci. XXIV, 149–157 (2002)

    Google Scholar 

  18. Kasahara, J., Takeishi, A., Kuroda, H., Horiba, M., Matsukawa, K., Leblanc, J.E., Endo, T., Fujiwara, T.: Experimental observation of oblique detonation waves around hypersonic free projectiles. In: Takayama, K., Sasoh, A. (eds.) Ram Accelerators, pp. 263–270. Springer-Verlag, Heidelberg, Germany (1998)

    Chapter  Google Scholar 

  19. Kasahara, J., Arai, T., Chiba, S., Takazawa, K., Tanahashi, Y., Matsuo, A.: Criticality for stabilized oblique detonation waves around spherical bodies in acetylene/oxygen/krypton mixtures. Proc. Combust. Inst. 29, 2817–2824 (2002)

  20. Kasahara, J., Fujiwara, T., Endo, T., Arai, T.: Chapman-Jouguet oblique detonation structure around hypersonic projectiles. AIAA J. 39, 1553–1561 (2001)

    Article  Google Scholar 

  21. Kasahara, J., Arai, T., Matsuo, A., Akai, N., Takazawa, K.: Experimental investigation of steady-state oblique detonation waves generated around hypersonic projectiles. AIAA-2001-1800

  22. Maeda, S., Inada, R., Kasahara, J., Matsuo, A.: Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proc. Combust. Inst. 33, 2343–2349 (2011)

    Article  Google Scholar 

  23. Korobeinikov, V.P., Levin, V.A., Markov, V.V., Chernyi, G.G.: Propagation of blast waves in a combustible gas. Astronaut. Acta 17(4–5), 529–537 (1972)

    Google Scholar 

  24. Liu, Y.-F.: Numerical Studies on Detonation and Pulse Detonation Engines (in Chinese). College of Engineering, Peking University, Beijing (2004)

    Google Scholar 

  25. Steger, J.L., Warming, R.F.: Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J. Comput. Phys. 40(2), 263–293 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)

  27. Radulescu, M.I., Lee, J.H.S.: The failure mechanism of gaseous detonations: experiments in porous wall tubes. Combust. Flame 131, 29–46 (2002)

    Article  Google Scholar 

  28. Maeda, S., Sumiya, S., Kasahara, J., Matsuo, A.: Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles. Proc. Combust. Inst. 34, 1973–1980 (2013)

    Article  Google Scholar 

  29. Jones, D.A., Kemister, G., Tonello, N.A., Oran, E.S., Sichel, M.: Numerical simulation of detonation reignition in H\(_2\)–O\(_2\) mixtures in area expansions. Shock Waves 10, 33–41 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (No. 91441110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Liu.

Additional information

Communicated by A. Higgins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Han, X., Yao, S. et al. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. Shock Waves 26, 729–739 (2016). https://doi.org/10.1007/s00193-016-0626-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-016-0626-3

Keywords

Navigation