Skip to main content
Log in

Numerical simulation of H2/air detonation using unstructured mesh

  • Original Article
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

To explore the capability of unstructured mesh to simulate detonation wave propagation phenomena, numerical simulation of H2/air detonation using unstructured mesh was conducted. The unstructured mesh has several adv- antages such as easy mesh adaptation and flexibility to the complicated configurations. To examine the resolution dependency of the unstructured mesh, several simulations varying the mesh size were conducted and compared with a computed result using a structured mesh. The results show that the unstructured mesh solution captures the detailed structure of detonation wave, as well as the structured mesh solution. To capture the detailed detonation cell structure, the unstructured mesh simulations required at least twice, ideally 5times the resolution of structured mesh solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kailasanath K.: Review of propulsion applications of detonation waves. AIAA J. 38(9), 1698–1708 (2000). doi:10.2514/2.1156

    Article  Google Scholar 

  2. Henry, J.R., Anderson, G.Y.: Design considerations for the air flame integrated Scramjet, NASA TM X2895 (1973)

  3. Taki S., Fujiwara T.: Numerical analysis of two-dimensional nonsteady detonations. AIAA J. 16, 73–77 (1978). doi:10.2514/3.60859

    Article  Google Scholar 

  4. Oran E.S., Young T.R., Boris J.P.: Weak and strong ignition. I. Numerical simulations of shock tube experiments. Combust. Flame 48, 135–148 (1982). doi:10.1016/0010-2180(82)90123-7

    Article  Google Scholar 

  5. Oran E.S., Weber J.W. Jr., Stefaniw E.I., Lefebvre M.H., Anderson J.D. Jr.: A numerical study of a two-dimensional H2–O2–Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147–163 (1998). doi:10.1016/S0010-2180(97)00218-6

    Article  Google Scholar 

  6. Wilson G.J., MacCormack R.W.: Modeling supersonic combustion using a fully implicit numerical method. AIAA J. 30(4), 1008–1015 (1992). doi:10.2514/3.11021

    Article  Google Scholar 

  7. Tsuboi N., Katoh S., Hayashi A.K.: Three-dimensional numerical simulation for hydrogen/air detonation: rectangular and diagonal structures. Proc. Combust. Inst. 29, 2783–2788 (2002). doi:10.1016/S1540-7489(02)80339-X

    Article  Google Scholar 

  8. Eto, K., Tsuboi, N., Hayashi, A.K.: Numerical study on three-dimensional C–J detonation waves: detailed propagating mechanism and existence of OH radical. In: Proceedings of the Combustion Institute, vol. 30, pp. 1907–1913. The Combustion Institute, USA (2005)

  9. Tsuboi, N., Eto, K., Hayashi, A.K.: Three-dimensional numerical simulation of H2/air detonation in a circular tube: structure of spinning mode. In: 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, vol. 71, Montreal, Canada, July 2005

  10. Hayashi, A.K., Eto, K., Tsuboi, N.: Numerical simulation of spin detonation in square tube. In: 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, vol. 85, Montreal, Canada, July 2005

  11. Tsuboi, N., Hayashi, A.K.: Numerical study on spinning detonations. In: 31st International Symposium on Combustion, pp. 2389–2396 (2007)

  12. Tsuboi N., Eto K., Hayashi A.K.: Detailed structure of spinning detonation in a circular tube. Combust. Flame 149(1/2), 144–161 (2007). doi:10.1016/j.combustflame.2006.12.004

    Article  Google Scholar 

  13. Ma F., Choi J.Y., Yang V.: Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines. J. Propuls. Power 21(3), 512–526 (2005). doi:10.2514/1.7393

    Article  Google Scholar 

  14. Harris P.G., Stowe R.A., Ripley R.C., Guzik S.M.: Pulse detonation engine as a Ramjet replacement. J. Propuls. Power 22(2), 462–473 (2006). doi:10.2514/1.15414

    Article  Google Scholar 

  15. Loth E., Sivier S., Baum J.: Adaptive unstructured finite element method for two-dimensinal detonation simulations. Shock Waves 8(1), 47–53 (1998)

    Article  Google Scholar 

  16. Gessner, T.: Time-dependent adaption for supersonic combustion waves modeled with detailed reaction mechanisms, PhD thesis, University of Freiburg (2001)

  17. Pimentel C., Azevedo J., Silva L.: Numerical study of wedge supported oblique shock wave-oblique detonation wave transitions. J. Braz. Soc. Mech. Sci. 24, 149–157 (2002). doi:10.1590/S0100-73862002000300002

    Article  Google Scholar 

  18. Luo, H., Baum, J., Lohner, R.: A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, AIAA 2007-0510 (2007)

  19. Wang Z.J.: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178, 210–251 (2002). doi:10.1006/jcph.2002.7041

    Article  MathSciNet  Google Scholar 

  20. Stull, D., Prophet, H.: JANAF Thermochemical Tables, 2nd edn. NSRDS-NBS37 (1971)

  21. Petersen E.L., Hanson R.K.: Reduced kinetics mechanisms for Ram accelerator combustion. J. Propuls. Power 15(4), 591–600 (1999). doi:10.2514/2.5468

    Article  Google Scholar 

  22. Baum, J.D., Löhner, R.: Numerical simulation of shock interaction with a modern main battle field tank, AIAA-91-1666 (1991)

  23. Baum, J.D., Luo, H., Löhner, R.: Numerical simulation of a blast inside a boeing 747, AIAA-93-3091 (1993)

  24. Ramamurti, R., Löhner, R.: Simulation of flow past complex geometries using a parallel implicit incompressible flow solver. In: Proceedings of 11th AIAA CFD Conference, pp. 1049, 1050, Orlando (1993)

  25. Baum, J.D., Luo, H., Löhner, R.: A new ALE adaptive unstructured methodology for the simulation of moving bodies, AIAA-94-0414

  26. Baum, J.D., Luo, H., Löhner, R.: Numerical simulation of blast in the world trade center, AIAA-95-0085 (1995)

  27. Baum, J.D., Luo, H., Löhner, R., Yang, C., Pelessone, D., Charman, C.: A coupled fluid/structure modeling of shock interaction with a truck, AIAA-96-0795 (1996)

  28. Baum, J.D., Löhner, R., Marquette, T.J., Luo, H.: Numerical simulation of aircraft canopy trajectory, AIAA-97-1885 (1997)

  29. Baum, J.D., Luo, H., Mestreau, E., Löhner, R., Pelessone, D., Charman, C.: A coupled CFD/CSD methodology for modeling weapon detonation and fragmentation, AIAA-99-0794 (1999)

  30. Ramamurti, R., Sandberg, W., Löhner, R.: Simulation of flow about flapping airfoils using a finite element incompressible flow solver, AIAA-99-0652 (1999)

  31. Löhner R.: Renumbering strategies for unstructured-grid solvers operating on shared-memory, cache-based parallel machines. Comput. Methods Appl. Mech. Eng. 163, 95–109 (1998). doi:10.1016/S0045-7825(98)00005-X

    Article  MathSciNet  Google Scholar 

  32. Tuszynski J., Löhner R.: Parallelizing the construction of indirect access arrays for shared-memory machines. Commun. Appl. Numer. Methods. Eng. 14, 773–781 (1998). doi:10.1002/(SICI)1099-0887(199808)14:8<773::AID-CNM186>3.0.CO;2-5

    Article  Google Scholar 

  33. Sharov, D., Luo, H., Baum, J.D., Löhner, R.: Implementation of unstructured grid GMRES+LU-SGS method on shared-memory, cache-based parallel computers, AIAA-00-0927 (2000)

  34. Löhner R., Ramamurti R.: A load balancing algorithm for unstructured grids. Comput. Fluid Dyn. 5, 39–58 (1995). doi:10.1080/10618569508940735

    Article  Google Scholar 

  35. Ramamurti R., Löhner R.: A parallel implicit incompressible flow solver using unstructured meshes. Comput. Fluids 5, 119–132 (1996). doi:10.1016/0045-7930(95)00032-1

    Article  Google Scholar 

  36. Löhner R.: Applied CFD Techniques. Wiley, New York (2001)

    MATH  Google Scholar 

  37. Lefebvre M.H., Oran E.S., Kailasanath K., Van Tigglelen P.J.: The influence of the heat capacity and diluent on detonation strucuture. Combust. Flame 95, 206–218 (1993). doi:10.1016/0010-2180(93)90062-8

    Article  Google Scholar 

  38. Yee, H.C.: Upwind and Symmetric Shock-capturing schemes. NASA Tech. Memo. 89464 (1987)

  39. Liu, Y., Vinokur, M.: Upwind algorithms for general thermo- chemical nonequilibrium flows, AIAA-89-0201 (1989)

  40. Powers J.M., Paolucci S.: Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43(5), 1088–1099 (2005). doi:10.2514/1.11641

    Article  Google Scholar 

  41. Powers J.M.: Review of multiscale modeling of detonation. J. Propuls. Power 22(6), 1217–1229 (2006). doi:10.2514/1.17897

    Article  Google Scholar 

  42. Sussman, M.A.: A computational study of unsteady shock-induced combustion of hydrogen–air mixtures, AIAA-1994-3101 (1994)

  43. Inaba, K., Matsuo, A.: Cellular structures of planar detonations with a detailed chemical reaction model, AIAA-2001-480 (2001)

  44. Gnoffo, P.A., White, J.A.: Computational aerothermodynamic simulation issues on unstructured grids, AIAA-2004-2371 (2004)

  45. Delanaye, M., Liu, Y.: Quadratic reconstruction finite volume schemes on 3d arbitary unstructured polyhedral grids, AIAA- 99-3259 (1999)

  46. Aftosmis, M., Gaitonde, D., Tavares, T.S.: On the accuracy, stability and monotonicity of various reconstruction algorithms for unstructured meshes, AIAA-94-0415 (1994)

  47. Pintgen F., Eckett C.A., Austin J.M., Shepherd J.E.: Direct observations of reaction zone structure in propagating detonations. Combust. Flame 133, 211–229 (2003). doi:10.1016/S0010-2180(02)00458-3

    Article  Google Scholar 

  48. Tsuboi N., Daimon Y., Hayashi A.K.: Three-dimensional numerical simulation of detonations in coaxial tubes. Shock Waves 18(5), 379–392 (2008). doi:10.1007/s00193-008-0152-z

    Article  Google Scholar 

  49. Oran E.S., Young T.R., Boris J.P., Picone J.M., Edwards D.H.: A Study of detonation structure: the formation of unreacted gas pockets. Proc. Combust. Inst. 19, 573–582 (1982)

    Article  Google Scholar 

  50. Gamezo V.N., Desbordes D., Oran E.S.: Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves 9, 11–17 (1999). doi:10.1007/s001930050134

    Article  Google Scholar 

  51. Watt S.D., Sharpe G.J.: Linear and nonlinear dynamics of cylindrically and spherically expanding detonation waves. J. Fluid Mech. 522, 329–356 (2005). doi:10.1017/S0022112004001946

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumiya Togashi.

Additional information

Communicated by F. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Togashi, F., Löhner, R. & Tsuboi, N. Numerical simulation of H2/air detonation using unstructured mesh. Shock Waves 19, 151–162 (2009). https://doi.org/10.1007/s00193-009-0197-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-009-0197-7

Keywords

PACS

Navigation