Skip to main content

Advertisement

Log in

Multi-label classification of pelvic organ prolapse using stress magnetic resonance imaging with deep learning

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

We aimed to develop a deep learning-based multi-label classification model to simultaneously diagnose three types of pelvic organ prolapse using stress magnetic resonance imaging (MRI).

Methods

Our dataset consisted of 213 midsagittal labeled MR images at maximum Valsalva. For each MR image, the two endpoints of the sacrococcygeal inferior-pubic point line were auto-localized. Based on this line, a region of interest was automatically selected as input to a modified deep learning model, ResNet-50, for diagnosis. An unlabeled MRI dataset, a public dataset, and a synthetic dataset were used along with the labeled image dataset to train the model through a novel training strategy. We conducted a fivefold cross-validation and evaluated the classification results using precision, recall, F1 score, and area under the curve (AUC).

Results

The average precision, recall, F1 score, and AUC of our proposed multi-label classification model for the three types of prolapse were 0.84, 0.72, 0.77, and 0.91 respectively, which were improved from 0.64, 0.53, 0.57, and 0.83 from the original ResNet-50. Classification took 0.18 s to diagnose one patient.

Conclusions

The proposed deep learning-based model were demonstrated feasible and fast in simultaneously diagnosing three types of prolapse based on pelvic floor stress MRI, which could facilitate computer-aided prolapse diagnosis and treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haylen BT, Maher CF, Barber MD, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic organ prolapse (POP). Int Urogynecol J. 2016;27(4):655–84.

    Article  Google Scholar 

  2. Fialkow MF, Newton KM, Lentz GM, Weiss NS. Lifetime risk of surgical management for pelvic organ prolapse or urinary incontinence. Int Urogynecol J. 2008;19(3):437–40.

    Article  CAS  Google Scholar 

  3. Wu JM, Hundley AF, Fulton RG, Myers ER. Forecasting the prevalence of pelvic floor disorders in US women 2010 to 2050. Obstet Gynecol. 2009;114(6):1278–83.

    Article  Google Scholar 

  4. Pannu HK, Kaufman HS, Cundiff GW, Genadry R, Bluemke DA, Fishman EK. Dynamic MR imaging of pelvic organ prolapse: spectrum of abnormalities. Radiographics. 2000;20(6):1567–82.

    Article  CAS  Google Scholar 

  5. Yang A, Mostwin JL, Rosenshein NB, Zerhouni EA. Pelvic floor descent in women: dynamic evaluation with fast MR imaging and cinematic display. Radiology. 1991;179(1):25–33.

    Article  CAS  Google Scholar 

  6. Comiter CV, Vasavada SP, Barbaric ZL, Gousse AE, Raz S. Grading pelvic prolapse and pelvic floor relaxation using dynamic magnetic resonance imaging. Urology. 1999;54(3):454–7.

    Article  CAS  Google Scholar 

  7. Luo J, Chen L, Fenner DE, Ashton-Miller JA, DeLancey JO. A multi-compartment 3-D finite element model of rectocele and its interaction with cystocele. J Biomech. 2015;48(9):1580–6.

    Article  Google Scholar 

  8. Dietz HP. Ultrasound in the assessment of pelvic organ prolapse. Best Pract Res Clin Obstet Gynaecol. 2019;54:12–30.

    Article  Google Scholar 

  9. Dietz HP. Pelvic floor ultrasound: a review. Am J Obstet Gynecol. 2010;202(4):321–34.

    Article  Google Scholar 

  10. Noll LE, Hutch JA. The SCIPP line–an aid in interpreting the voiding lateral cystourethrogram. Obstet Gynecol. 1969;33(5):680–9.

    CAS  PubMed  Google Scholar 

  11. Yuan J, Liao H, Luo R, Luo J. Automatic radiology report generation based on multi-view image fusion and medical concept enrichment. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention, 2019. pp 721–729.

  12. Zhang Y, Wang X, Xu Z, Yu Q, Yuille A, Xu D. When radiology report generation meets knowledge graph. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2020;07:12910–12917.

  13. Monshi MMA, Poon J, Chung V. Deep learning in generating radiology reports: a survey. Artif Intell Med. 2020;106:101878.

    Article  Google Scholar 

  14. Robinson CJ, Swift S, Johnson DD, Almeida JS. Prediction of pelvic organ prolapse using an artificial neural network. Am J Obstet Gynecol. 2008;199(2):193.e1–6.

    Article  Google Scholar 

  15. Onal S, Lai-Yuen S, Bao P, Weitzenfeld A, Hogue D, Hart S. Quantitative assessment of new MRI-based measurements to differentiate low and high stages of pelvic organ prolapse using support vector machines. Int Urogynecol J. 2015;26(5):707–13.

    Article  CAS  Google Scholar 

  16. Yuan Y, Qin W, Buyyounouski M, et al. Prostate cancer classification with multiparametric MRI transfer learning model. Med Phys. 2019;46(2):756–65.

    Article  Google Scholar 

  17. Baltruschat IM, Nickisch H, Grass M, Knopp T, Saalbach A. Comparison of deep learning approaches for multi-label chest X-ray classification. Sci Rep. 2019;9(1):1–10.

    Article  CAS  Google Scholar 

  18. Larson KA, Luo J, Guire KE, Chen L, Ashton-Miller JA, DeLancey JOL. 3D analysis of cystoceles using magnetic resonance imaging assessing midline, paravaginal, and apical defects. Int Urogynecol J. 2012;23(3):285–93.

    Article  Google Scholar 

  19. Tumbarello JA, Hsu Y, Lewicky-Gaupp C, Rohrer S, DeLancey JO. Do repetitive Valsalva maneuvers change maximum prolapse on dynamic MRI? Int Urogynecol J. 2010;21(10):1247–51.

    Article  Google Scholar 

  20. Trowbridge E, Fultz N, Patel D, DeLancey J, Fenner D. Distribution of pelvic organ support measures in a population-based sample of middle-aged, community-dwelling African American and white women in southeastern Michigan. Am J Obstet Gynecol. 2008;198(5):548.e1–6.

    Article  Google Scholar 

  21. Swenson C, Smith T, Luo J, Kolenic G, Ashton-Miller J, DeLancey J. Intraoperative cervix location and apical support stiffness in women with and without pelvic organ prolapse. Am J Obstet Gynecol. 2017;216(2):155.e1–8.

    Article  Google Scholar 

  22. Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26(6):1045–57.

    Article  Google Scholar 

  23. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. pp 8110–8119.

  24. Feng F, Ashton-Miller JA, DeLancey JO, Luo J (2021) Feasibility of a deep learning-based method for automated localization of pelvic floor landmarks using stress MR images. Int Urogynecol J32:3069–75.

    Article  Google Scholar 

  25. Betschart C, Chen L, Ashton-Miller J, DeLancey JO. On pelvic reference lines and the MR evaluation of genital prolapse: a proposal for standardization using the Pelvic Inclination Correction System. Int Urogynecol J. 2013;24:1421–8.

    Article  CAS  Google Scholar 

  26. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. pp 770–778.

  27. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. pp 248–255.

  28. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980.

  29. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vision. 2020;128(2):336–59.

    Article  Google Scholar 

  30. Chen L, Lisse SA, Larson KA, Berger M, Ashton-Miller J, DeLancey J. Structural failure sites in anterior vaginal wall prolapse: identification of a collinear triad. Obstet Gynecol. 2016;128(85S):862.

    Google Scholar 

  31. Hsu Y, Chen L, Summers A, Ashton-Miller J, DeLancey JO. Anterior vaginal wall length and degree of anterior compartment prolapse seen on dynamic MRI. Int Urogynecol J. 2007;19:137–42.

    Article  Google Scholar 

  32. Swenson C, Simmen AM, Berger M, Morgan D, DeLancey J. The long and short of it: anterior vaginal wall length before and after anterior repair. Int Urogynecol J. 2015;26:1035–9.

    Article  Google Scholar 

  33. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, Shpanskaya K. Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2019. pp 590–597.

Download references

Acknowledgements

We gratefully acknowledge support from NSFC General Program grant 31870942, Peking University Clinical Medicine Plus X—Young Scholars Project PKU2020LCXQ017 and PKU2021LCXQ028, PKU-Baidu Fund 2020BD039, NIH R01 HD038665, and P50 HD044406.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. Wang: protocol/project development, data analysis, manuscript writing/editing; D. He: protocol/project development, data analysis, manuscript writing/editing; F. Feng: data analysis, manuscript editing; J.A. Ashton-Miller: protocol/project development, manuscript editing. J.O.L. DeLancey: protocol/project development, data collection or management, data analysis, manuscript editing; J.J. Luo: protocol/project development, data collection or management, data analysis, manuscript writing/editing

Corresponding author

Correspondence to Jiajia Luo.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., He, D., Feng, F. et al. Multi-label classification of pelvic organ prolapse using stress magnetic resonance imaging with deep learning. Int Urogynecol J 33, 2869–2877 (2022). https://doi.org/10.1007/s00192-021-05064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-021-05064-7

Keywords

Navigation