Skip to main content

Advertisement

Log in

Pharmacological methods for the preclinical assessment of therapeutics for OAB: an up-to-date review

  • Review Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction

Licenced oral pharmacotherapies for overactive bladder (OAB) act on muscarinic receptors or β3-adrenoceptors. The search for new drugs to treat OAB that have novel mechanisms of action is very active, with the aim of discovering more effective and/or better tolerated agents.

Methods

A literature review of the most frequently used pharmacological methods for the preclinical assessment of new agents aimed at treating OAB, such as isolated organ technique, electrophysiological techniques, radioligand binding assay, and animal models, was carried out. Novel potential developments based on recent knowledge of urothelial and neural mechanisms are also discussed.

Results

The isolated organ technique, electrophysiological techniques, and the radioligand binding assay are very effective methods for the demonstration that a novel pharmacological target with a specific and high affinity binding site for a new drug is present in the bladder and its modulation regulates functions critical for the pathophysiology of OAB. Afterward, the new drug should be shown to be effective in animal models of OAB, although the translational value of these models is limited by a poor pathophysiological relationship with human OAB. Exciting novel perspectives focusing in particular on the theory of the mucosal–bladder network have recently opened new paths in the discovery and assessment of new therapeutics in this field.

Conclusions

Available experimental models still play a central role in the appraisal of OAB therapeutics; however, their shortcomings and the paucity of very effective drugs indicate the need for new models that better reproduce the pathophysiological features of OAB. Some emerging lines of research show promise. A change of perspective in the future evaluation of putative drugs is required, especially in the light of the latest knowledge on the key role of the mucosal–bladder network and the brain–bladder neural pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BOO:

Bladder outlet obstruction

CNS:

Central nervous system

DO:

Detrusor overactivity

EAE:

Experimental autoimmune encephalomyelitis

DM:

Diabetes mellitus

EFS:

Electrical field stimulation

ICs:

Interstitial cells

KV7 channels:

Voltage-dependent type 7 K+ channels

LUT:

Lower urinary tract

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NGF:

Nerve growth factor

nNOS:

Neuronal nitric oxide synthase

NO:

Nitric oxide

NVC:

Non-voiding contractions

OAB:

Overactive bladder

SHR:

Spontaneous hypertensive rat

TTX:

Tetrodotoxin

WKY:

Wistar–Kyoto rats

References

  1. Haylen BT, De Ridder D, Freeman RM, Swift SE, Berghmans B, Lee J et al (2010) An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int Urogynecol J 21:5–26. doi:10.1007/s00192-009-0976-9

    Article  PubMed  Google Scholar 

  2. Sacco E, Tienforti D, D’Addessi A et al (2010) Social, economic, and health utility considerations in the treatment of overactive bladder. Open Access J Urol 2:11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hashim H, Abrams P (2006) Is the bladder a reliable witness for predicting detrusor overactivity? J Urol 175:191–194

    Article  CAS  PubMed  Google Scholar 

  4. Roosen A, Chapple CR, Dmochowski RR, Fowler CJ, Gratzke C, Roehrborn CG, Stief CG, Andersson KE (2009) A refocus on the bladder as the originator of storage lower urinary tract symptoms: a systematic review of the latest literature. Eur Urol 56:810–819

    Article  PubMed  Google Scholar 

  5. Hanna-Mitchell AT, Kashyap M, Chan WV, Andersson KE, Tannenbaum C (2014) Pathophysiology of idiopathic overactive bladder and the success of treatment: a systematic review from ICI-RS 2013. Neurourol Urodyn 33(5):611–617

    Article  CAS  PubMed  Google Scholar 

  6. Chapple C (2014) Chapter 2: Pathophysiology of neurogenic detrusor overactivity and the symptom complex of “overactive bladder”. Neurourol Urodyn 33:S6–S13

    Article  PubMed  Google Scholar 

  7. Brading AF (1997) A myogenic basis for the overactive bladder. Urology 50 [Suppl 6A]:57–67

    Article  CAS  PubMed  Google Scholar 

  8. Tyrode MV (1910) The mode of action of some purgative salts. Arch Int Pharmacodyn Ther 20:205–223

    Google Scholar 

  9. Ringer S (1883) A third contribution regarding the influence of the inorganic constituents of the blood on the ventricular contraction. J Physiol 4:222–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krebs HA, Henseleit K (1932) Studies on urea formation in the animal organism. Hoppe Seylers Z Physiol Chem 210:3–66

    Article  Google Scholar 

  11. Longhurst PA, Uvelius B (2001) Pharmacological techniques for the in vitro study of the urinary bladder. J Pharmacol Toxicol Methods 45:91–108

    Article  CAS  PubMed  Google Scholar 

  12. Uvelius B (2001) Length-tension relations of in vitro urinary bladder smooth muscle strips. J Pharmacol Toxicol Methods 45:87–90

    Article  CAS  PubMed  Google Scholar 

  13. Sibley GN (1984) A comparison of spontaneous and nerve-mediated activity in bladder muscle from man, pig and rabbit. J Physiol 354:431–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pessina F, Marazova K, Kalfin R et al (2011) Mechanical response to electrical field stimulation of rat, guinea-pig, monkey and human detrusor muscle: a comparative study. Naunyn Schmiedebergs Arch Pharmacol 363:543–550

    Article  Google Scholar 

  15. Mutafova-Yambolieva VN, Durnin L (2014) The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 144:162–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Currò D, Bientinesi R, Sacco E, Bassi PF (2014) Motor effects of KV7 channel modulators in the human detrusor. From the Pharmacology 2014 Meeting: Proceedings of the British Pharmacological Society at http://www.pA2online.org/abstracts/vol12Issue3abst070P.pdf

  17. Drake MJ, Harvey IJ, Gillespie JI (2003) Autonomous activity in the isolated guinea pig bladder. Exp Physiol 88:19–30

    Article  CAS  PubMed  Google Scholar 

  18. Fabiyi AC, Brading AF (2006) The use of the isolated mouse whole bladder for investigating bladder overactivity. J Pharmacol Exp Ther 319:1386–1394

    Article  CAS  PubMed  Google Scholar 

  19. Parsons BA, Drake MJ, Gammie A et al (2012) The validation of a functional, isolated pig bladder model for physiological experimentation. Front Pharmacol 3:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Creed KE, Ishikawa S, Ito Y (1983) Electrical and mechanical activity recorded from rabbit urinary bladder in response to nerve stimulation. J Physiol 338:149–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Callahan SM, Creed KE (1986) Non-cholinergic neurotransmission and the effects of peptides on the urinary bladder of guinea-pigs and rabbits. J Physiol 374:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hashitani H, Suzuki H (1995) Electrical and mechanical responses produced by nerve stimulation in detrusor smooth muscle of the guinea-pig. Eur J Pharmacol 15(284):177–183

    Article  Google Scholar 

  23. Hashitani H, Brading AF (2003) Electrical properties of detrusor smooth muscles from the pig and human urinary bladder. Br J Pharmacol 140:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kanai A, Andersson KE (2010) Bladder afferent signalling: recent findings. J Urol 183:1288–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Groat WC, Yoshimura N (2009) Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol 194:91–138

  26. De Wachter S (2011) Afferent signalling from the bladder: species differences evident from extracellular recordings of pelvic and hypogastric nerves. Neurourol Urodyn 30:647–652

    Article  PubMed  Google Scholar 

  27. Zagorodnyuk VP, Costa M, Brookes SJ (2006) Major classes of sensory neurons to the urinary bladder. Auton Neurosci 126–127:390–397

    Article  PubMed  Google Scholar 

  28. Xu L, Gebhart GF (2008) Characterization of mouse lumbar splanchnic and pelvic nerve urinary bladder mechanosensory afferents. J Neurophysiol 99:244–253

    Article  PubMed  Google Scholar 

  29. Keay SK, Birder LA, Chai TC (2014) Evidence for bladder urothelial pathophysiology in functional bladder disorders. Biomed Res Int 2014:865463. doi:10.1155/2014/865463

    Article  PubMed  PubMed Central  Google Scholar 

  30. Birder LA, de Groat WC (2007) Mechanisms of disease: involvement of the urothelium in bladder dysfunction. Nat Clin Pract Urol 4:46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drake MJ, Millis IW, Gillespie JI (2001) Model of peripheral autonomous modules and a myovesical plexus in normal and overactive bladder function. Lancet 358(9279):401–403

    Article  CAS  PubMed  Google Scholar 

  32. Aizawa N, Homma Y, Igawa Y (2012) Effects of mirabegron, a novel β3-adrenoceptor agonist, on primary bladder afferent activity and bladder microcontractions in rats compared with the effects of oxybutynin. Eur Urol 62(6):1165–1173

    Article  CAS  PubMed  Google Scholar 

  33. Neher E, Sakmann B (1976) Single channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  34. Hamill OP, Marty A, Neher E et al (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391:85–100

    Article  CAS  PubMed  Google Scholar 

  35. Klöckner U, Isenberg G (1985) Action potentials and net membrane currents of isolated smooth muscle cells (urinary bladder of the guinea-pig). Pflugers Arch 405:329–339

    Article  PubMed  Google Scholar 

  36. Pusch M, Neher E (1988) Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch 411:204–211

    Article  CAS  PubMed  Google Scholar 

  37. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole cell recording method. J Gen Physiol 92:145–159

    Article  CAS  PubMed  Google Scholar 

  38. Kajioka S, Nakayama S, Asano H et al (2008) Levcromakalim and MgGDP activate small conductance ATP-sensitive K+ channels of K+ channel pore 6.1/sulfonylurea receptor 2A in pig detrusor smooth muscle cells: uncoupling of cAMP signal pathways. J Pharmacol Exp Ther 327:114–123

    Article  CAS  PubMed  Google Scholar 

  39. Imaizumi Y, Torii Y, Ohi Y et al (1998) Ca2+ images and K+ current during depolarization in smooth muscle cells of the guinea-pig vas deferens and urinary bladder. J Physiol 510:705–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hulme EC, Trevethick MA (2010) Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol 161:1219–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bylund DB, Toews ML (1993) Radioligand binding methods: practical guide and tips. Am J Physiol 265:L421–L429

    CAS  PubMed  Google Scholar 

  42. Rovati GE (1993) Rational experimental design and data analysis for ligand binding studies: tricks, tips and pitfalls. Pharmacol Res 28:277–299

    Article  CAS  PubMed  Google Scholar 

  43. Andersson K-E, Soler R, Füllhase C (2011) Rodent models for urodynamic investigation. Neurourol Urodyn 30:636–646

    Article  PubMed  Google Scholar 

  44. Seaman EK et al (1994) Persistence or recurrence of symptoms after transurethral resection of the prostate: a urodynamic assessment. J Urol 152:935–937

    CAS  PubMed  Google Scholar 

  45. Pandita RK, Mizusawa H, Andersson KE (2000) Intravesical oxyhemoglobin initiates bladder overactivity in conscious, normal rats. J Urol 164:545–550

    Article  CAS  PubMed  Google Scholar 

  46. Gu BJ, Ishizuka O, Igawa Y et al (2000) Role of supraspinal tachykinins for micturition in conscious rats with and without bladder outlet obstruction. Naunyn Schmiedebergs Arch Pharmacol 361:543–548

    Article  CAS  PubMed  Google Scholar 

  47. Wolffenbuttel KP, Kok DJ, Minekus JP et al (2001) Urodynamic follow-up of experimental urethral obstruction in individual guinea pigs. Neurourol Urodyn 20:699–713

    Article  CAS  PubMed  Google Scholar 

  48. Kato K, Wein AJ, Kitada S et al (1988) The functional effect of mild outlet obstruction on the rabbit urinary bladder. J Urol 140:880–884

    CAS  PubMed  Google Scholar 

  49. Sibley GN (1985) An experimental model of detrusor instability in the obstructed pig. Br J Urol 57:292–298

    Article  CAS  PubMed  Google Scholar 

  50. Azadzoi KM, Tarcan T, Kozlowski R et al (1999) Overactivity and structural changes in the chronically ischemic bladder. J Urol 162:1768–1778

    Article  CAS  PubMed  Google Scholar 

  51. Nomiya M, Yamaguchi O, Andersson KE, Sagawa K, Aikawa K, Shishido K, Yanagida T, Kushida N, Yazaki J, Takahashi N (2012) The effect of atherosclerosis-induced chronic bladder ischemia on bladder function in the rat. Neurourol Urodyn 31:195–200

    Article  CAS  PubMed  Google Scholar 

  52. Saito M, Gotoh M, Kato K et al (1989) Denervation supersensitivity of the rabbit urinary bladder to calcium ion. J Urol 142:418–421

    CAS  PubMed  Google Scholar 

  53. De Groat WC, Kawatani M (1989) Reorganization of sympathetic preganglionic connections in cat bladder ganglia following parasympathetic denervation. J Physiol 409:431–449

  54. Braverman AS, Luthin GR, Ruggieri MR (1998) M2 muscarinic receptor contributes to contraction of the denervated rat urinary bladder. Am J Physiol 275:R1654–R1660

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Madersbacher HG (1999) Neurogenic bladder dysfunction. Curr Opin Urol 9:303–307

    Article  CAS  PubMed  Google Scholar 

  56. De Groat WC, Yoshimura N (2006) Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Prog Brain Res 152:59–84

    Article  PubMed  Google Scholar 

  57. De Groat WC (1995) Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia 33:493–505

    Article  PubMed  Google Scholar 

  58. Kuo HC (2003) Effectiveness of intravesical resiniferatoxin in treating detrusor hyper-reflexia and external sphincter dyssynergia in patients with chronic spinal cord lesions. BJU Int 92:597–601

    Article  CAS  PubMed  Google Scholar 

  59. Pizzi A, Falsini C, Martini M et al (2014) Urinary incontinence after ischemic stroke: clinical and urodynamic studies. Neurourol Urodyn 33:420–425

    Article  PubMed  Google Scholar 

  60. Yeo L, Singh R, Gundeti M et al (2012) Urinary tract dysfunction in Parkinson’s disease: a review. Int Urol Nephrol 44:415–424

    Article  PubMed  Google Scholar 

  61. Ruffion A, Castro-Diaz D, Patel H et al (2013) Systematic review of the epidemiology of urinary incontinence and detrusor overactivity among patients with neurogenic overactive bladder. Neuroepidemiology 41:146–155

    Article  PubMed  Google Scholar 

  62. Belayev L, Alonso OF, Busto R et al (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622

    Article  CAS  PubMed  Google Scholar 

  63. Yokoyama O, Yoshiyama M, Namiki M et al (1997) Influence of anesthesia on bladder hyperactivity induced by middle cerebral artery occlusion in the rat. Am J Physiol 273:R1900–R1907

    CAS  PubMed  Google Scholar 

  64. Yokoyama O, Komatsu K, Ishiura Y et al (1998) Change in bladder contractility associated with bladder overactivity in rats with cerebral infarction. J Urol 159:577–580

    Article  CAS  PubMed  Google Scholar 

  65. Blandini F, Armentero MT (2012) Animal models of Parkinson’s disease. FEBS J 279:1156–1166

    Article  CAS  PubMed  Google Scholar 

  66. Albanese A, Jenner P, Marsden CD et al (1988) Bladder hyperreflexia induced in marmosets by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett 87:46–50

    Article  CAS  PubMed  Google Scholar 

  67. Yoshimura N, Mizuta E, Kuno S et al (1993) The dopamine D1 receptor agonist SKF 38393 suppresses detrusor hyperreflexia in the monkey with parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neuropharmacology 32:315–321

    Article  CAS  PubMed  Google Scholar 

  68. Yoshimura N, Mizuta E, Yoshida O et al (1998) Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonian cynomolgus monkeys. J Pharmacol Exp Ther 286:228–233

    CAS  PubMed  Google Scholar 

  69. Robinson AP, Harp CT, Noronha A et al (2014) The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fowler CJ (2002) Bladder afferents and their role in the overactive bladder. Urology 59:37–42

    Article  PubMed  Google Scholar 

  71. McMurray G, Casey JH, Naylor AM (2006) Animal models in urological disease and sexual dysfunction. Br J Pharmacol 147:S62–S79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Parsons BA, Drake MJ (2011) Animal models in overactive bladder research. Handb Exp Pharmacol 202:15–43

    Article  CAS  PubMed  Google Scholar 

  73. Son H, Lee SL, Park WH et al (2007) New unstable bladder model in hypercholesterolemia rats. Urology 69:186–190

    Article  PubMed  Google Scholar 

  74. Rahman NU, Phonsombat S, Bochinski D et al (2007) An animal model to study lower urinary tract symptoms and erectile dysfunction: the hyperlipidaemic rat. BJU Int 100:658–663

    Article  PubMed  Google Scholar 

  75. Kirschner-Hermanns R, Daneshgari F, Vahabi B, Birder L, Oelke M, Chacko S (2012) Does diabetes mellitus-induced bladder remodeling affect lower urinary tract function? ICI-RS 2011. Neurourol Urodyn 31:359–364

    Article  PubMed  Google Scholar 

  76. Palleschi G, Pastore AL, Maggioni C, Fuschi A, Pacini L, Petrozza V, Carbone A (2014) Overactive bladder in diabetes mellitus patients: a questionnaire-based observational investigation. World J Urol 32:1021–1025

    Article  PubMed  Google Scholar 

  77. Daneshgari F, Leiter EH, Liu G, Reeder J (2009) Animal models of diabetic uropathy. J Urol 182:S8–S1

    Article  PubMed  PubMed Central  Google Scholar 

  78. Burnett AL et al (1997) Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nat Med 3:571–574

    Article  CAS  PubMed  Google Scholar 

  79. Sutherland RS, Kogan BA, Piechota HJ et al (1997) Vesicourethral function in mice with genetic disruption of neuronal nitric oxide synthase. J Urol 157:1109–1116

    Article  CAS  PubMed  Google Scholar 

  80. Meredith AL, Thorneloe KS, Werner ME et al (2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279:36746–36752

    Article  CAS  PubMed  Google Scholar 

  81. Hodges SJ, Zhou G, Deng FM et al (2008) Voiding pattern analysis as a surrogate for cystometric evaluation in uroplakin II knockout mice. J Urol 179:2046–2051

    Article  PubMed  Google Scholar 

  82. Aboushwareb T, Zhou G, Deng FM et al (2009) Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice. Neurourol Urodyn 28:1028–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Spitsbergen JM, Clemow DB, McCarty R et al (1998) Neurally mediated hyperactive voiding in spontaneously hypertensive rats. Brain Res 20(790):151–159

    Article  Google Scholar 

  84. Persson K, Pandita RK, Spitsbergen JM et al (1998) Spinal and peripheral mechanisms contributing to hyperactive voiding in spontaneously hypertensive rats. Am J Physiol 275:R1366–R1373

    CAS  PubMed  Google Scholar 

  85. Sacco E, Pinto F, Bassi P (2008) Emerging pharmacological targets in overactive bladder therapy: experimental and clinical evidences. Int Urogynecol J Pelvic Floor Dysfunct 19(4):583–598

    Article  PubMed  Google Scholar 

  86. Sacco E, Bientinesi R (2015) Innovative pharmacotherapies for women with overactive bladder: where are we now and what is in the pipeline? Int Urogynecol J 26:629–640

    Article  PubMed  Google Scholar 

  87. Lagou M, Drake MJ, Markerink-Van Ittersum M, De Vente J, Gillespie JI (2006) Interstitial cells and phasic activity in the isolated mouse bladder. BJU Int 98:643–650

  88. Gillespie JI, Markerink-Van Ittersum M, De Vente J (2006) Interstitial cells and cholinergic signalling in the outer muscle layers of the guinea-pig bladder. BJU Int 97:379–385

    Article  CAS  PubMed  Google Scholar 

  89. Schnegelsberg B, Sun TT, Cain G et al (2009) Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity and changes in urinary bladder function. Am J Physiol Regul Integr Comp Physiol 298:R534–R547

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kanasaki K, Yu W, vonBodungenet M et al (2013) Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. FASEB J 27:1950–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wyndaele JJ (2012) Modulation of non-voiding activity by the muscarinergic antagonist tolterodine and the β(3)-adrenoceptor agonist mirabegron in conscious rats with partial outflow obstruction. BJU Int 110:E143

    Article  CAS  PubMed  Google Scholar 

  92. Gillespie JI, Palea S, Guilloteau V, Guerard M, Lluel P, Korstanje C (2012) Modulation of non-voiding activity by the muscarinergic antagonist tolterodine and the β(3)-adrenoceptor agonist mirabegron in conscious rats with partial outflow obstruction. BJU Int 110:E132–E142

    Article  CAS  PubMed  Google Scholar 

  93. Sacco E, Bientinesi R, Tienforti D, Racioppi M, Gulino G, D’Agostino D, Vittori M, Bassi P (2014) Discovery history and clinical development of mirabegron for the treatment of overactive bladder and urinary incontinence. Expert Opin Drug Discov 9:433–448

    Article  CAS  PubMed  Google Scholar 

  94. Tadic SD, Holstege G, Griffiths DJ (2012) The CNS and bladder dysfunction. F1000 Med Rep 4:20

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kaiser D, Weise G, Möller K et al (2014) Spontaneous white matter damage, cognitive decline and neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small vessel disease. Acta Neuropathol Commun 2:169

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kavia RB, Dasgupta R, Fowler CJ (2005) Functional imaging and the central control of the bladder. J Comp Neurol 493:27–32

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The significant contribution of Dr Lucia Lisi (Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy) for the preparation of the figures is gratefully acknowledged. The authors thank her warmly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Sacco.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sacco, E., Bientinesi, R., Bassi, P. et al. Pharmacological methods for the preclinical assessment of therapeutics for OAB: an up-to-date review. Int Urogynecol J 27, 1633–1644 (2016). https://doi.org/10.1007/s00192-016-2977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-016-2977-9

Keywords

Navigation