Skip to main content

Advertisement

Log in

Mesh contraction: in vivo documentation of changes in apparent surface area utilizing meshes visible on magnetic resonance imaging in the rabbit abdominal wall model

  • Original Article
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

Introduction and hypothesis

Our aim was to analyze the apparent contraction of meshes in vivo after abdominal wall reconstruction and evaluate histological and biomechanical properties after explantation.

Methods

Nine New Zealand female rabbits underwent repair of two full-thickness 25 × 30-mm midline defects in the upper and lower parts of the abdomen. These were primarily overlaid by 35 × 40-mm implants of a polyvinylidene fluoride (PVDF) DynaMesh (n = 6) or polypropylene meshes Ultrapro (n = 6) and Marlex (n = 6). Edges of the meshes were secured with iron(II,III) oxide (Fe3O4)-loaded PVDF sutures. Magnetic resonance images (MRIs) were taken at days 2, 30 and 90 after implantation. The perimeter of the mesh was traced using a 3D spline curve. The apparent surface area or the area within the PVDF sutures was compared with the initial size using the one-sample t test. A two-way repeat analysis of variance (ANOVA) was used to compare the apparent surface area over time and between groups.

Results

PVDF meshes and sutures with Fe3O4 could be well visualized on MRI. DynaMesh and Marlex each had a 17 % decrease in apparent surface area by day 2 (p < 0.001 and p = 0.001), respectively, which persisted after day 90. Whereas there was a decrease in apparent surface area in Ultrapro, it did not reach significance until day 90 (p = 0.01). Overall, the apparent surface area decreased 21 % in all meshes by day 90. No differences in histological or biomechanical properties were observed at day 90.

Conclusions

There was a reduction in the apparent surface area between implantation and day 2, indicating that most mesh deformation occurs prior to tissue in-growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Haylen BT, Freeman RM, Swift SE, Cosson M, Davila GW, Deprest J, Dwyer PL, Fatton B, Kocjancic E, Lee J et al (2011) An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint terminology and classification of the complications related directly to the insertion of prostheses (meshes, implants, tapes) and grafts in female pelvic floor surgery. Neurourol Urodyn 30(1):2–12

    Article  PubMed  Google Scholar 

  2. Svabik K, Martan A, Masata J, El-Haddad R, Hubka P, Pavlikova M (2011) Ultrasound appearances after mesh implantation–evidence of mesh contraction or folding? Int Urogynecol J 22(5):529–533

    Article  PubMed  Google Scholar 

  3. Velemir L, Amblard J, Fatton B, Savary D, Jacquetin B (2010) Transvaginal mesh repair of anterior and posterior vaginal wall prolapse: a clinical and ultrasonographic study. Ultrasound Obstet Gynecol: Official J Int Soc Ultrasound Obstet Gynecol 35(4):474–480

    Article  CAS  Google Scholar 

  4. Palma P, Riccetto C, Fraga R, Miyaoka R, Prando A (2010) Dynamic evaluation of pelvic floor reconstructive surgery using radiopaque meshes and three-dimensional helical CT. Int Braz J Urol 36(2):209–214, discussion 215-207

    Article  PubMed  Google Scholar 

  5. Guillaume O, Blanquer S, Letouzey V, Cornille A, Huberlant S, Lemaire L, Franconi F, de Tayrac R, Coudane J, Garric X (2012) Permanent polymer coating for in vivo MRI visualization of tissue reinforcement prostheses. Macromol Biosci 12(10):1364–1374

    Article  CAS  PubMed  Google Scholar 

  6. Klinge U, Klosterhalfen B, Ottinger AP, Junge K, Schumpelick V (2002) PVDF as a new polymer for the construction of surgical meshes. Biomaterials 23(16):3487–3493

    Article  CAS  PubMed  Google Scholar 

  7. Kramer NA, Donker HC, Otto J, Hodenius M, Senegas J, Slabu I, Klinge U, Baumann M, Mullen A, Obolenski B et al (2010) A concept for magnetic resonance visualization of surgical textile implants. Invest Radiol 45(8):477–483

    Article  PubMed  Google Scholar 

  8. Kuehnert N, Kraemer NA, Otto J, Donker HC, Slabu I, Baumann M, Kuhl CK, Klinge U (2012) In vivo MRI visualization of mesh shrinkage using surgical implants loaded with superparamagnetic iron oxides. Surg Endosc 26(5):1468–1475

    Article  PubMed Central  PubMed  Google Scholar 

  9. Sandaite I, Claus F, Manodoro S, Muellen A, De Ridder D, Deprest J (2011) Experimental MRI-contrast imaging of suture and mesh materials with FE304 –containing polyvinylidenefluoride polymers designed for pelvic floor surgery. Neurourol Urodynam 30(6):1114–1115

    Google Scholar 

  10. Conze J, Junge K, Weiss C, Anurov M, Oettinger A, Klinge U, Schumpelick V (2008) New polymer for intra-abdominal meshes–PVDF copolymer. J Biomed Mater Research B Appl Biomater 87(2):321–328

    Article  Google Scholar 

  11. Ozog Y, Konstantinovic ML, Werbrouck E, De Ridder D, Edoardo M, Deprest J: Shrinkage and biomechanical evaluation of lightweight synthetics in a rabbit model for primary fascial repair. Int Urogynecol J Pelvic Floor Dysfunct 2011

  12. Junge K, Rosch R, Krones CJ, Klinge U, Mertens PR, Lynen P, Schumpelick V, Klosterhalfen B (2005) Influence of polyglecaprone 25 (Monocryl) supplementation on the biocompatibility of a polypropylene mesh for hernia repair. Hernia 9(3):212–217

    Article  CAS  PubMed  Google Scholar 

  13. Klosterhalfen B, Junge K, Klinge U (2005) The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices 2(1):103–117

    Article  PubMed  Google Scholar 

  14. Valentin JE, Badylak JS, McCabe GP, Badylak SF (2006) Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am Vol 88(12):2673–2686

    Article  Google Scholar 

  15. Zheng F, Lin Y, Verbeken E, Claerhout F, Fastrez M, De Ridder D, Deprest J (2004) Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obst Gynecol 191(6):1961–1970

    Article  CAS  Google Scholar 

  16. Konstantinovic ML, Lagae P, Zheng F, Verbeken EK, De Ridder D, Deprest JA (2005) Comparison of host response to polypropylene and non-cross-linked porcine small intestine serosal-derived collagen implants in a rat model. BJOG 112(11):1554–1560

    Article  CAS  PubMed  Google Scholar 

  17. Jones KA, Feola A, Meyn L, Abramowitch SD, Moalli PA (2009) Tensile properties of commonly used prolapse meshes. Int Urogynecol J Pelvic Floor Dysfunct 20(7):847–853

    Article  PubMed Central  PubMed  Google Scholar 

  18. Ozog Y, Konstantinovic ML, Verschueren S, Spelzini F, De Ridder D, Deprest J (2009) Experimental comparison of abdominal wall repair using different methods of enhancement by small intestinal submucosa graft. Int Urogynecol J Pelvic Floor Dysfunct 20(4):435–441

    Article  PubMed  Google Scholar 

  19. Shapiro EM, Skrtic S, Koretsky AP (2005) Sizing it up: cellular MRI using micron-sized iron oxide particles. Magn Reson Med 53(2):329–338

    Article  PubMed  Google Scholar 

  20. Manodoro S, Endo M, Uvin P, Albersen M, Vlacil J, Engels A, Schmidt B, De Ridder D, Feola A, Deprest J (2013) Graft-related complications and biaxial tensiometry following experimental vaginal implantation of flat mesh of variable dimensions. BJOG: Int J Obst Gynaecol 120(2):244–250

    Article  CAS  Google Scholar 

  21. Feola A, Abramowitch S, Jallah Z, Stein S, Barone W, Palcsey S, Moalli P (2013) Deterioration in biomechanical properties of the vagina following implantation of a high-stiffness prolapse mesh. BJOG: Int J Obstet Gynaecol 120(2):224–232

    Article  CAS  Google Scholar 

  22. Abramowitch SD, Feola A, Jallah Z, Moalli PA (2009) Tissue mechanics, animal models, and pelvic organ prolapse: a review. Eur J Obstet Gynecol Reprod Biol 144(Suppl 1):S146–158

    Article  PubMed  Google Scholar 

  23. Bellon JM, Contreras LA, Bujan J, Palomares D, Carrera-San Martin A (1998) Tissue response to polypropylene meshes used in the repair of abdominal wall defects. Biomaterials 19(7–9):669–675

    Article  CAS  PubMed  Google Scholar 

  24. Claerhout F, Verbist G, Verbeken E, Konstantinovic M, De Ridder D, Deprest J (2008) Fate of collagen-based implants used in pelvic floor surgery: a 2-year follow-up study in a rabbit model. Am J Obstet Gynecol 198(1):e91–96, 94

    Article  Google Scholar 

  25. Hilger WS, Walter A, Zobitz ME, Leslie KO, Magtibay P, Cornella J (2006) Histological and biomechanical evaluation of implanted graft materials in a rabbit vaginal and abdominal model. Am J Obstet Gynecol 195(6):1826–1831

    Article  PubMed  Google Scholar 

  26. Konerding MA, Chantereau P, Delventhal V, Holste JL, Ackermann M: Biomechanical and histological evaluation of abdominal wall compliance with intraperitoneal onlay mesh implants in rabbits: A comparison of six different state-of-the-art meshes. Medical engineering & physics 2011

  27. Ozog Y, Konstantinovic M, Werbrouck E, De Ridder D, Mazza E, Deprest J (2011) Persistence of polypropylene mesh anisotropy after implantation: an experimental study. BJOG 118(10):1180–1185

    Article  CAS  PubMed  Google Scholar 

  28. Pierce LM, Grunlan MA, Hou Y, Baumann SS, Kuehl TJ, Muir TW (2009) Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina. Am J Obstet Gynecol 200(5):e541–548, 549

    Google Scholar 

  29. Kraemer NA, Donker HC, Kuehnert N, Otto J, Schrading S, Krombach GA, Klinge U, Kuhl CK: In Vivo Visualization of Polymer-Based Mesh Implants Using Conventional Magnetic Resonance Imaging and Positive-Contrast Susceptibility Imaging. Investigative radiology 2013.

Download references

Acknowledgments

JAD and DDR are beneficents of a fundamental clinical research grant of the Fonds Wetenschappelijk Onderzoek Vlaanderen (1.8.012.07). EM and AF are recipients of a Marie Curie Industria-Academia Partnership Programme grant and NS of a FP7 grant (NMP Large–310389).

Conflicts of interest

The investigational meshes were donated by FEG Textiltechnik, Ethicon, and Bard. These companies have or are supporting our experimental program under an unconditional grant managed by the transfer office Leuven Research and Development. The investigators designed the protocols are the owners of the results and publish these independently of the above sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan A. Deprest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, M., Feola, A., Sindhwani, N. et al. Mesh contraction: in vivo documentation of changes in apparent surface area utilizing meshes visible on magnetic resonance imaging in the rabbit abdominal wall model. Int Urogynecol J 25, 737–743 (2014). https://doi.org/10.1007/s00192-013-2293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-013-2293-6

Keywords

Navigation