Skip to main content
Log in

The ongoing modernization of the Taiwan semi-dynamic datum based on the surface horizontal deformation model using GNSS data from 2000 to 2016

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A semi-dynamic geodetic datum, composed of a static geodetic datum and a surface deformation model, is proposed in this study to maintain the accuracy of geodetic datum in Taiwan. A concept to construct the surface deformation model is also suggested to accommodate the characteristics of temporal variation of the velocity field and coseismic displacements caused by earthquakes in Taiwan. In this study, we proposed a surface deformation model, containing a secular velocity grid model during 2000–2016 and a coseismic displacement grid model of the 2016 ML 6.6 Meinong earthquake, as an example to examine its adaptability in Taiwan. The secular velocity field relative to the station KMNM from 2000 to 2016 was first evaluated in this study using data from 380 continuous GNSS stations in Taiwan. Integrating 672 campaign-mode GNSS velocities from 2002 to 2016, a secular velocity grid model was constructed using the Kriging interpolation method. The high-precision coseismic displacements of the 2016 Meinong earthquake calculated using the IGS ultra-rapid orbit were also evidenced. The coseismic displacement grid model for all Taiwan for this event was built using the kinematic dislocation model to prevent contamination from nontectonic sources. Another 1341 independent GNSS control points surveyed in 2013 and 2016 were adopted to validate the reliability of the surface deformation model. After correction by the deformation model, 1219 points (91%) matched the criterion at the urban region of cadastral surveying in Taiwan (< 6 cm). The Electronic Global Navigation Satellite System (e-GNSS) in Taiwan is suggested to be integrated with the geodetic semi-dynamic datum to improve the precision of e-GNSS and to monitor the accuracy of the surface deformation model in the Taiwan semi-dynamic datum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geod 85:457–473

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the International Terrestrial Reference Frame modelling nonlinear station motions. J Geophys Res Solid Earth 121:6109–6131

    Article  Google Scholar 

  • Angelier J, Chu HT, Lee JC, Hu JC (2000) Active faulting and earthquake risk: the Chihshang fault case, Taiwan. J Geodyn 29:151–185

    Article  Google Scholar 

  • Blick G, Donnelly N (2016) From static to dynamic datums: 150 years of geodetic datums in New Zealand. N Z J Geol Geophys 59(1):15–21. https://doi.org/10.1080/00288306.2015.1128451

    Article  Google Scholar 

  • Blick G, Crook C, Grant D, Beavan J (2003) Implementation of a semi-dynamic datum for New Zealand. In: Sansò F (ed) A window on the future, Supporo Japan. International association of geodesy symposia, vol 128. Springer, Berlin, pp 38–43

    Chapter  Google Scholar 

  • Bonilla MG (1977) Summary of Quaternary faulting and elevation changes in Taiwan. Mem Geol Soc China 2:43–56

    Google Scholar 

  • Bos AG, Spakman W, Nyst MCJ (2003) Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field. J Geophys Res 108:2458. https://doi.org/10.1028/2002JB002336

    Article  Google Scholar 

  • Bürgmann R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567

    Article  Google Scholar 

  • Chang ETY, Chao BF (2014) Analysis of coseismic deformation using EOF method on dense, continuous GPS data in Taiwan. Tectonophysics 637:106–115

    Article  Google Scholar 

  • Chang CP, Chang TY, Angelier J, Kao H, Lee JC, Yu SB (2003) Strain and stress field in Taiwan oblique convergent system: constraints from GPS observations and tectonic data. Earth Planet Sci Lett 214:115–127

    Article  Google Scholar 

  • Cheng SN, Yeh YT (1989) Catalog of the earthquakes in Taiwan from 1604 to 1988. Institute of the Earth Sciences, Academia Sinica, IES-R-661

  • Ching KE, Chen KH (2015) Tectonic effect for establishing a semi-dynamic datum in Southwest Taiwan. Earth Planets Space 67:207. https://doi.org/10.1186/s40623-015-0374-0

    Article  Google Scholar 

  • Ching KE, Rau RJ, Lee JC, Hu JC (2007) Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth Planet Sci Lett 262:601–619

    Article  Google Scholar 

  • Ching KE, Johnson KM, Rau RJ, Chuang RY, Kuo LC, Leu PL (2011) Inferred fault geometry and slip distribution of the 2010 Jiashian, Taiwan, earthquake is consistent with a thick-skinned deformation model. Earth Planet Sci Lett 301:78–86

    Article  Google Scholar 

  • Chiu YH, Shih PTY (2014) National datum uncertainty due to reference frame transformation: case study for the geodetic datum of Taiwan. J Surv Eng. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000135

    Article  Google Scholar 

  • Crook C, Donnelly N, Beavan J, Pearson C (2016) From geophysics to geodetic datum: updating the NZGD2000 deformation model. N Z J Geol Geophys 59(1):22–32. https://doi.org/10.1080/00288306.2015.1100641

    Article  Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS software version 5.0. Astronomical Institute, University of Berne

  • Efron B, Stein C (1981) The Jackknife estimate of variance. Ann Stat 9:586–596

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Grant DB, Pearse MB (1995) Proposal for a dynamic national geodetic datum for New Zealand. In: IUGG XXI General Assembly, Boulder, CO, USA, July, pp 2–14

  • Ho CS (1986) A synthesis of the geologic evolution of Taiwan. Tectonophysics 125:1–16

    Article  Google Scholar 

  • Hsu YJ, Yu SB, Simons M, Kuo LC, Chen HY (2009) Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics 479:4–18

    Article  Google Scholar 

  • Ko SM, Ching KE, Rau RJ, Chen CL (2014) Present-day kinematics of the Meishan fault inferred from the 2002–2013 GPS and leveling data. Spec Publ Cent Geol Surv MOEA 28:223–240

    Google Scholar 

  • Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139

    Google Scholar 

  • Lee JC, Angelier J, Chu HT, Hu JC, Jeng FS, Rau RJ (2003) Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998–2001. J Geophys Res 108:2528. https://doi.org/10.1029/2003JB002394

    Article  Google Scholar 

  • Majdański M (2012) The structure of the crust in TESZ area by kriging interpolation. Acta Geophys 60:59–75

    Article  Google Scholar 

  • Miura H (2010) A study of travel time prediction using universal kriging. Top 18:257–270

    Article  Google Scholar 

  • Morgan P, Bock Y, Coleman R, Feng P, Gerrard D, Johnston G, Luton G, McDowall B, Pearse M, Rizos C, Tiele R (1996) A zero order GPS network for the Australian region. Unisurv S-46, University of NSW, Australia

  • Müller H, Angermann D (2009) The international terrestrial reference frame—latest developments. In: Proceedings of the 16th international workshop on laser ranging, Poznan, Poland, vol 1, pp 27–34

  • Nikolaidis R (2002) Observation of geodetic and seismic deformation with the Global Positioning System. Ph.D. dissertation, University of California, San Diego

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Pearson C, Snay R (2012) Introducing HTDP 3.1 to transform coordinates across time and spatial reference frames. GPS Solut 17(1):1–15

    Article  Google Scholar 

  • Roush JJ, Lingle CS, Guritz RM, Fatland DR, Voronina VA (2003) Surge-front propagation and velocities during the early-1993–95 surge of Bering Glacier, Alaska, U.S.A., from sequential SAR imagery. Ann Glaciol 36:37–44

    Article  Google Scholar 

  • Samsonov S, Tiampo K (2006) Analytical optimization of a DInSAR and GPS dataset for derivation of three-dimensional surface motion. IEEE Geosci Remote Sens Lett 3:107–111

    Article  Google Scholar 

  • Samsonov S, Tiampo K, Rundle J, Li Z (2007) Application of DInSAR–GPS optimization for derivation of fine-scale surface motion maps of Southern California. IEEE Geosci Remote Sens Lett 45:512–521

    Article  Google Scholar 

  • Savage JC (1983) A dislocation model of strain accumulation and release at a subduction zone. J Geophys Res 88:4984–4996

    Article  Google Scholar 

  • Savage JC, Simpson RW (1997) Surface strain accumulation and the seismic moment tensor. Bull Seismol Soc Am 87:1345–1353

    Google Scholar 

  • Schwarz CR, Wade EB (1990) The North American Datum of 1983: project methodology and execution. Bull Geod 64:28–62

    Article  Google Scholar 

  • Shimazaki K, Nakata T (1980) Time-predictable recurrence model for large earthquakes. Geophys Res Lett 7:279–282

    Article  Google Scholar 

  • Snay RA (2012) Evolution of NAD 83 in the United States: journey from 2D toward 4D. J Surv Eng 138:161–171. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000083

    Article  Google Scholar 

  • Suppe J (1980) Imbricated structure of western foothills belt, south-central Taiwan. Petrol Geol Taiwan 17:1–16

    Google Scholar 

  • Tanaka Y, Saita H, Sugawara J, Iwata K, Toyoda T, Hirai H, Kawaguchi T, Matsuzaka S, Hatanaka Y, Tobita M, Kuroishi Y, Imakiire T (2007) Efficient maintenance of the Japanese geodetic datum 2000 using crustal deformation models—PatchJGD & semi-dynamic datum. Bull Geogr Surv Inst 54:49–59

    Google Scholar 

  • Tsuji H, Komaki K (2005) Towards the realization of geo-referencing infrastructure for dynamic Japan (GRID-Japan). Bull Geogr Surv Inst 52:1–11

    Google Scholar 

  • Tsuji H, Matsuzaka S (2004) Realization of horizontal geodetic coordinates 2000. Bull Geogr Surv Inst 51:11–30

    Google Scholar 

  • Van Dalfsen W, Doornenbal JC, Dortland S, Gunnink JL (2006) A comprehensive seismic velocity model for the Netherlands based on lithostratigraphic layers. Neth J Geosci 85:277–292

    Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics—an introduction with applications. Springer, Berlin, p 387

    Book  Google Scholar 

  • Wang K, Hu Y, He J (2012) Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484:327–332

    Article  Google Scholar 

  • Wessel P, Smith W (1991) Free software helps map and display data. EOS Trans AGU 72:441–446

    Article  Google Scholar 

  • Yang M, Tseng CL, Yu JY (2001) Establishment and maintenance of Taiwan geodetic datum 1997. J Surv Eng 127:119–132

    Article  Google Scholar 

  • Yu SB, Kuo LC (2001) Present-day crustal motion along the Longitudinal Valley, eastern Taiwan. Tectonophysics 333:199–217

    Article  Google Scholar 

  • Yu SB, Chen HY, Kuo LC (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics 274:41–59

    Article  Google Scholar 

Download references

Acknowledgements

We thank CGS of Taiwan for the campaign-surveyed GNSS velocity field and the MOI, CWB, NLSC, AS, NCKU and the International GNSS Service for continuous GNSS observations. We thank Ming Yang, He-Chin Chen and Wen-Yung Lin for many helpful suggestions. All figures were generated using the Generic Mapping Tools (GMT), developed by Wessel and Smith (1991). This research was supported by the NLSC-106-22, NLSC-107-40, CGS 106-5226904000-07-01 and CGS 107-5226904000-07-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-En Ching.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CK., Ching, KE. & Chen, KH. The ongoing modernization of the Taiwan semi-dynamic datum based on the surface horizontal deformation model using GNSS data from 2000 to 2016. J Geod 93, 1543–1558 (2019). https://doi.org/10.1007/s00190-019-01267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-019-01267-5

Keywords

Navigation