Skip to main content
Log in

Determination of Phobos’ rotational parameters by an inertial frame bundle block adjustment

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of \(1.14^\circ \pm 0.03^\circ \) together with a control point network of 685 points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acton CH (1996) Ancillary data services of NASA’s Navigation and Ancillary Information Facility. Planet Space Sci 44:65–70

    Article  Google Scholar 

  • Albertz J, Wiggenhagen M (2009) Taschenbuch zur Photogrammetrie und Fernerkundung/guide for photogrammetry and remote sensing, 5th ed. Wichmann

  • Archinal BA, A’Hearn MF, Bowell E, Conrad A, Consolmagno GJ, Courtin R, Williams IP et al (2011) Report of the IAU working group on cartographic coordinates and rotational elements: 2009. Celest Mech Dyn Astron 109:101–135

    Article  Google Scholar 

  • Borderies N, Yoder CF (1990) Phobos’ gravity field and its influence on its orbit and physical librations. Astron Astrophys 233:235–251

    Google Scholar 

  • Burmeister S (2017) Determining rotational elements of planetary bodies. PhD thesis, Technische Universität Berlin. https://doi.org/10.14279/depositonce-5796

  • Colombo G (1965) Rotational period of the planet Mercury. Nature 208(5010):575–575. https://doi.org/10.1038/208575a0

    Article  Google Scholar 

  • Duxbury TC (1989) The figure of Phobos. Icarus 78:169–180

    Article  Google Scholar 

  • Duxbury TC (2017) on HRSC team meeting. Münster, Germany

  • Duxbury TC, Hoffmann H, Roatsch T, Oberst J, Behnke T, Schwarz G (2011) Mars Express super resolution channel image restoration and geometric properties. Tech. rep., School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA, USA

  • Gehrels T (1967) Minor planets. I. The rotation of Vesta. Astron J 72:929. https://doi.org/10.1086/110364

    Article  Google Scholar 

  • Giese B, Hussmann H, Roatsch T, Helfenstein P, Thomas PC, Neukum G (2011) Enceladus: evidence for librations forced by Dione. EPSC Abstracts Vol. 6, EPSC-DPS2011-976

  • Jacobson RA (2008) Ephemerides of the Martian Satellites MAR080. IOM 343R-08-006, JPL

  • Jacobson RA (2010) The orbits and masses of the martian satellites and the libration of Phobos. Astron J 139:668–679

    Article  Google Scholar 

  • Jacobson RA (2017) The orientations of the Martian Satellites from a Fit to Ephemeris MAR097 revised. JPL-IOM 392R-17-007

  • Jacobson RA, Lainey V (2014) Martian satellite orbits and ephemerides. Planet Space Sci 102:35–44

    Article  Google Scholar 

  • Jaumann R, Neukum G, Behnke T, Duxbury TC, Eichentopf K, Flohrer J, Sv G, Giese B, Gwinner K, Hauber E, Hoffmann H, Hoffmeister A, Köhler U, Matz KD, McCord TB, Mertens V, Oberst J, Pischel R, Reiss D, Ress E, Roatsch T, Saiger P, Scholten F, Schwarz G, Stephan K, Wählisch M (2007) The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet Space Sci 55:928–952

    Article  Google Scholar 

  • Klaasen KP, Thorpe TE, Morabito LA (1977) Inflight performance of the viking visual imaging subsystem. Appl Opt 16(12):3158–3170

    Article  Google Scholar 

  • Konopliv AS, Sjogren WL (1995) The JPL Mars gravity field, Mars50c, based upon Viking and Mariner 9 Doppler tracking data. NASA STI/Recon Technical Report N 95

  • Konopliv AS, Asmar SW, Park RS, Bills BG, Zuber MT et al (2014) The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. Icarus 240:103–117

    Article  Google Scholar 

  • Mastrodemos N, Rush B, Vaughan D, Owen W (2001) Optical navigation for Dawn at Vesta. AAS Paper 11-222

  • Oberst J, Schwarz G, Behnke T, Hoffmann H, Matz KD, Neukum G et al (2008) The imaging performance of the SRC on Mars Express. Planet Space Sci 56:473–491

    Article  Google Scholar 

  • Oberst J, Zubarev A, Nadezhdina I, Shishkina L, Rambaux N (2014) The phobos geodetic control point network and rotation model. Planet Space Sci 102:45–50

    Article  Google Scholar 

  • Owen WM Jr, Wang TC, Harch A, Bell M, Peterson C (2001) NEAR optical navigation at Eros. In: Spencer DB, Seybold CC, Misra AK, Lisowski RJ (eds) Advances in the astronautical sciences, vol 109, pp 1075–1090

  • Pasewaldt A, Oberst J, Willner K, Beisembin B, Hoffmann H, Matz KD, Roatsch T, Michael G, Cardesín-Moinelo A, Zubarev AE (2015) Astrometric observations of Phobos with the SRC on Mars Express. A&A 580:A28

    Article  Google Scholar 

  • Peale SJ, Gold T (1965) Rotation of the planet Mercury. Nature 206(4990):1240–1241. https://doi.org/10.1038/2061240b0

    Article  Google Scholar 

  • Pischel R, Zegers T (2009) Mars Express: the scientific investigations, ESA SP-1291, chap Mars Express science planning and operations, pp 249–256

  • Pravec P, Harris AW, Michalowski T (2002) Asteroid rotations. In: Bottke WF Jr, Cellino A, Paolicchi P, Binzel RP (eds) Book asteroids III. Univ. of Arizona Press, pp 113–122

  • Preusker F, Scholten F, Matz KD, Roatsch T, Willner K, Hviid SF, Vincent JB et al (2015) Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko—Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. A&A 583:A33. https://doi.org/10.1051/0004-6361/201526349

    Article  Google Scholar 

  • Rambaux N, Castillo-Rogez JC, Le Maistre S, Rosenblatt P (2012) Rotational motion of Phobos. Astron Astrophys 548:A14

    Article  Google Scholar 

  • Rosenblatt P, Lainey V, Maistre SL, Marty J, Bea H (2008) Accurate mars express orbits to improve the determination of the mass and ephemeris of the martian moons. Planet Space Sci 56(7):1043–1053. https://doi.org/10.1016/j.pss.2008.02.004

    Article  Google Scholar 

  • Stark A, Willner K, Burmeister S, Oberst J (2017) Geodetic framework for Martian Satellite exploration i: reference rotation models. EPSC Abstracts Vol. 11, EPSC2017-868-1

  • Tajeddine R, Rambaux N, Lainey V, Charnoz S, Richard A, Rivoldini A, Noyelles B (2014) Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346:322–324

    Article  Google Scholar 

  • Thomas PC, Tajeddine R, Tiscareno MS, Burns JA, Joseph J, Loredo TJ, Helfenstein P, Porco C (2016) Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264:37–47

    Article  Google Scholar 

  • Tiscareno MS, Thomas PC, Ja B (2009) The rotation of Janus and Epimetheus. Icarus 204:254–261

    Article  Google Scholar 

  • Williams JG, Konopliv AS, Boggs DH, Park RS, Yuan DN, Lemoine FG, Goossens S, Mazarico E, Nimmo F, Weber RC, Asmar SW, Melosh HJ, Neumann GA, Phillips RJ, Smith DE, Solomon SC, Watkins MM, Wieczorek MA, Andrews-Hanna JC, Head JW, Kiefer WS, Matsuyama I, McGovern PJ, Taylor GJ, Zuber MT (2014) Lunar interior properties from the GRAIL mission. J Geophys Res Planet 119(7):2013JE004,559

  • Willner K (2009) The Martian Moon Phobos—a geodetic analysis of its motion, orientation, shape, and physical parameters. Phd thesis, Technische Universität Berlin. https://doi.org/10.14279/depositonce-2338

  • Willner K, Oberst J, Hussmann H, Giese B, Hoffmann H, Matz KD, Roatsch T, Duxbury T (2010) Phobos control point network, rotation, and shape. Earth Planet Sci Lett 294:541–546

    Article  Google Scholar 

  • Witasse O, Duxbury T, Chicarro A, Altobelli N, Andert T, Aronica A, Barabash S, Zegers T et al (2014) Mars Express investigations of Phobos and Deimos. Planet Space Sci 102:18–34

    Article  Google Scholar 

  • Zeitler W, Oberst J (1999) The Mars Pathfinder landing site and the Viking control point network. J Geophys Res Planets 104:8935–8942

    Article  Google Scholar 

Download references

Acknowledgements

We thank the HRSC Experiment team at DLR, Institute of Planetary Research, Berlin, and at Freie Universität Berlin, the HRSC Science Team, as well as the Mars Express Project teams at ESTEC, ESOC, and ESAC for their successful planning and acquisition of data as well as for making processed data available to the HRSC team. S. Burmeister was supported by the Deutsche Forschungsgemeinschaft (DFG) under FKZ OB 124/11-1 and FKZ OB 124/14-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Burmeister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burmeister, S., Willner, K., Schmidt, V. et al. Determination of Phobos’ rotational parameters by an inertial frame bundle block adjustment. J Geod 92, 963–973 (2018). https://doi.org/10.1007/s00190-018-1112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-018-1112-8

Keywords

Navigation