Skip to main content
Log in

Algorithms for non-linear and stochastic resource constrained shortest path

  • Original Article
  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

Resource constrained shortest path problems are usually solved thanks to a smart enumeration of all the non-dominated paths. Recent improvements of these enumeration algorithms rely on the use of bounds on path resources to discard partial solutions. The quality of the bounds determines the performance of the algorithm. The main contribution of this paper is to introduce a standard procedure to generate bounds on paths resources in a general setting which covers most resource constrained shortest path problems, among which stochastic versions. In that purpose, we introduce a generalization of the resource constrained shortest path problem where the resources are taken in a monoid. The resource of a path is the monoid sum of the resources of its arcs. The problem consists in finding a path whose resource minimizes a non-decreasing cost function of the path resource among the paths that respect a given constraint. Enumeration algorithms are generalized to this framework. We use lattice theory to provide polynomial procedures to find good quality bounds. These procedures solve a generalization of the algebraic path problem, where arc resources belong to a lattice ordered monoid. The practical efficiency of the approach is proved through an extensive numerical study on some deterministic and stochastic resource constrained shortest path problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 9th dimacs implementation challenge, shortest paths (2006). http://www.dis.uniroma1.it/challenge9/. Accessed 7 Dec 2016

  • Adulyasak Y, Jaillet P (2015) Models and algorithms for stochastic and robust vehicle routing with deadlines. Transp Sci 50(2):608–626

    Article  Google Scholar 

  • Aho AV, Hopcroft JE (1974) The design and analysis of computer algorithms. Pearson Education India, Chennai

    MATH  Google Scholar 

  • Artzner P, Delbaen F, Eber JM, Heath D (1999) Coherent measures of risk. Math Finance 9(3):203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Backhouse RC, Carré BA (1975) Regular algebra applied to path-finding problems. IMA J Appl Math 15(2):161–186

    Article  MathSciNet  MATH  Google Scholar 

  • Bast H, Delling D, Goldberg A, Müller-Hannemann M, Pajor T, Sanders P, Wagner D, Werneck R (2014) Route planning in transportation networks

  • Beasley J, Christofides N (1989) An algorithm for the resource constrained shortest path problem. Networks 19(4):379–394

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R (1958) On a routing problem. Q Appl Math 16:87–90

    Article  MATH  MathSciNet  Google Scholar 

  • Bertsimas DJ (1992) A vehicle routing problem with stochastic demand. Oper Res 40(3):574–585

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas DJ, Simchi-Levi D (1996) A new generation of vehicle routing research: robust algorithms, addressing uncertainty. Oper Res 44(2):286–304

    Article  MATH  Google Scholar 

  • Blyth TS (2005) Lattices and ordered algebraic structures, vol 1. Springer, Berlin

    MATH  Google Scholar 

  • Bogerding M (2013) Kissfft library. http://sourceforge.net/projects/kissfft/. Accessed 16 Feb 2017

  • Borndörfer R, Grötschel M, Löbel A (2001) Scheduling duties by adaptive column generation. Technischer Bericht 01–02, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Berlin. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5053

  • Carlyle WM, Royset JO, Kevin Wood R (2008) Lagrangian relaxation and enumeration for solving constrained shortest-path problems. Networks 52(4):256–270

    Article  MathSciNet  MATH  Google Scholar 

  • Carré BA (1971) An algebra for network routing problems. IMA J Appl Math 7(3):273–294

    Article  MathSciNet  MATH  Google Scholar 

  • Chang TS, Wan Y, Ooi WT (2009) A stochastic dynamic traveling salesman problem with hard time windows. Eur J Oper Res 198(3):748–759

    Article  MathSciNet  MATH  Google Scholar 

  • Chen A, Ji Z (2005) Path finding under uncertainty. J Adv Transp 39(1):19–37

    Article  Google Scholar 

  • Chen BY, Lam WH, Sumalee A, Li Q, Shao H, Fang Z (2013) Finding reliable shortest paths in road networks under uncertainty. Netw Spat Econ 13(2):123–148

    Article  MathSciNet  MATH  Google Scholar 

  • Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on principles of programming languages. ACM, New York, pp 238–252

  • Cousot P, Cousot R (1979) Constructive versions of Tarski’s fixed point theorems. Pac J Math 82(1):43–57

    Article  MathSciNet  MATH  Google Scholar 

  • Davey BA, Priestley HA (2002) Introduction to lattices and order. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • De Silva A (2001) Combining constraint programming and linear programming on an example of bus driver scheduling. Ann Oper Res 108(1–4):277–291

    Article  MathSciNet  MATH  Google Scholar 

  • Desrochers M, Soumis F (1988) A generalized permanent labeling algorithm for the shortest path problem with time windows. INFOR Inf Syst Oper Res 26(3):191–212

    MATH  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Dumitrescu I, Boland N (2003) Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem. Networks 42(3):135–153

    Article  MathSciNet  MATH  Google Scholar 

  • Eiger A, Mirchandani PB, Soroush H (1985) Path preferences and optimal paths in probabilistic networks. Transp Sci 19(1):75–84

    Article  MathSciNet  Google Scholar 

  • Eppstein D (1998) Finding the k shortest paths. SIAM J Comput 28(2):652–673

    Article  MathSciNet  MATH  Google Scholar 

  • Fahle T, Junker U, Karisch SE, Kohl N, Sellmann M, Vaaben B (2002) Constraint programming based column generation for crew assignment. J Heuristics 8(1):59–81

    Article  MATH  Google Scholar 

  • Fan Y, Nie Y (2006) Optimal routing for maximizing the travel time reliability. Netw Spat Econ 6(3–4):333–344

    Article  MathSciNet  MATH  Google Scholar 

  • Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algorithm for the elementary shortest path problem with resource constraints: application to some vehicle routing problems. Networks 44(3):216–229

    Article  MathSciNet  MATH  Google Scholar 

  • Fink E (1992) A survey of sequential and systolic algorithms for the algebraic path problem. University of Waterloo, Faculty of Mathematics

    Google Scholar 

  • Flajolet A, Blandin S, Jaillet P (2014) Robust adaptive routing under uncertainty. arXiv preprint arXiv:1408.3374

  • Ford LR, Fulkerson DR (1956) Maximal flow through a network. Can J Math 8(3):399–404

    Article  MathSciNet  MATH  Google Scholar 

  • Frank H (1969) Shortest paths in probabilistic graphs. Oper Res 17(4):583–599

    Article  MathSciNet  MATH  Google Scholar 

  • Fu L (2001) An adaptive routing algorithm for in-vehicle route guidance systems with real-time information. Transp Res Part B Methodol 35(8):749–765

    Article  Google Scholar 

  • Fu L, Rilett LR (1998) Expected shortest paths in dynamic and stochastic traffic networks. Transp Res Part B Methodol 32(7):499–516

    Article  Google Scholar 

  • Gondran M, Minoux M (2008) Graphs, dioids and semirings: new models and algorithms, vol 41. Springer, Berlin

    MATH  Google Scholar 

  • Gounaris CE, Wiesemann W, Floudas CA (2013) The robust capacitated vehicle routing problem under demand uncertainty. Oper Res 61(3):677–693

    Article  MathSciNet  MATH  Google Scholar 

  • Gualandi S, Malucelli F (2009) Constraint programming-based column generation. 4OR 7(2):113–137

    Article  MathSciNet  MATH  Google Scholar 

  • Gualandi S, Malucelli F (2012) Resource constrained shortest paths with a super additive objective function. In: Milano M (ed) Principles and practice of constraint programming. Springer, Berlin, pp 299–315

    Chapter  MATH  Google Scholar 

  • Hall RW (1986) The fastest path through a network with random time-dependent travel times. Transp Sci 20(3):182–188

    Article  MathSciNet  Google Scholar 

  • Handler GY, Zang I (1980) A dual algorithm for the constrained shortest path problem. Networks 10(4):293–309

    Article  MathSciNet  MATH  Google Scholar 

  • Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107

    Article  Google Scholar 

  • Ioachim I, Gelinas S, Soumis F, Desrosiers J (1998) A dynamic programming algorithm for the shortest path problem with time windows and linear node costs. Networks 31(3):193–204

    Article  MathSciNet  MATH  Google Scholar 

  • Irnich S (2008) Resource extension functions: properties, inversion, and generalization to segments. OR Spectr 30(1):113–148

    Article  MathSciNet  MATH  Google Scholar 

  • Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. Springer, Berlin

    Book  MATH  Google Scholar 

  • Irnich S, Villeneuve D (2006) The shortest-path problem with resource constraints and k-cycle elimination for \(k \ge 3\). INFORMS J Comput 18(3):391–406

    Article  MathSciNet  MATH  Google Scholar 

  • Jaillet P, Qi J, Sim M (2016) Routing optimization under uncertainty. Oper Res 64(1):186–200

    Article  MathSciNet  MATH  Google Scholar 

  • Joksch HC (1966) The shortest route problem with constraints. J Math Anal Appl 14(2):191–197

    Article  MathSciNet  MATH  Google Scholar 

  • Jula H, Dessouky M, Ioannou PA (2006) Truck route planning in nonstationary stochastic networks with time windows at customer locations. IEEE Trans Intell Transp Syst 7(1):51–62

    Article  Google Scholar 

  • Junker U, Karisch SE, Kohl N, Vaaben B, Fahle T, Sellmann M (1999) A framework for constraint programming based column generation. In: International conference on principles and practice of constraint programming. Springer, Berlin, pp 261–274

  • Kohl N, Desrosiers J, Madsen OB, Solomon MM, Soumis F (1999) 2-path cuts for the vehicle routing problem with time windows. Transp Sci 33(1):101–116

    Article  MATH  Google Scholar 

  • Kosuch S, Lisser A (2010) Stochastic shortest path problem with delay excess penalty. Electron Notes Discrete Math 36:511–518

    Article  MATH  Google Scholar 

  • Larsen J (1999) Parallelization of the vehicle routing problem with time windows. Ph.D. Thesis, Technical University of Denmark, Department of Informatics and Mathematical Modeling

  • Lehmann DJ (1977) Algebraic structures for transitive closure. Theor Comput Sci 4(1):59–76

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Tian P, Leung SC (2010) Vehicle routing problems with time windows and stochastic travel and service times: models and algorithm. Int J Prod Econ 125(1):137–145

    Article  Google Scholar 

  • Loui RP (1983) Optimal paths in graphs with stochastic or multidimensional weights. Commun ACM 26(9):670–676

    Article  MathSciNet  MATH  Google Scholar 

  • Lozano L, Medaglia AL (2013) On an exact method for the constrained shortest path problem. Comput Oper Res 40(1):378–384

    Article  MATH  Google Scholar 

  • Mazmanyan L, Trietsch D, Baker K (2009) Stochastic traveling salesperson models with safety time. Tech. rep., Working paper

  • Mirchandani PB (1976) Shortest distance and reliability of probabilistic networks. Comput Oper Res 3(4):347–355

    Article  Google Scholar 

  • Mohri M (2002) Semiring frameworks and algorithms for shortest-distance problems. J Autom Lang Comb 7(3):321–350

    MathSciNet  MATH  Google Scholar 

  • Murthy I, Sarkar S (1996) A relaxation-based pruning technique for a class of stochastic shortest path problems. Transp Sci 30(3):220–236

    Article  MATH  Google Scholar 

  • Murthy I, Sarkar S (1998) Stochastic shortest path problems with piecewise-linear concave utility functions. Manag Sci 44(11–part–2):S125–S136

    Article  MATH  Google Scholar 

  • Nie Y, Fan Y (2006) Arriving-on-time problem: discrete algorithm that ensures convergence. Transp Res Rec J Transp Res Board 1964(1):193–200

    Article  Google Scholar 

  • Nikolova E (2010) High-performance heuristics for optimization in stochastic traffic engineering problems. In: Lirkov I, Margenov S, Wisniewski J (eds) Large-scale scientific computing. Springer, Berlin, pp 352–360

    Chapter  Google Scholar 

  • Nikolova E, Kelner JA, Brand M, Mitzenmacher M (2006) Stochastic shortest paths via quasi-convex maximization. In: Algorithms–ESA 2006. Springer, Berlin, pp 552–563

  • Parmentier A (2016) Algorithms for shortest path and airline problems. Ph.D. Thesis, École des Ponts Paristech, Université Paris Est

  • Parmentier A, Meunier F (2017) Aircraft routing and crew pairing: updated algorithms at air France. arXiv preprint arXiv:1706.06901

  • Powell WB, Chen ZL (1998) A generalized threshold algorithm for the shortest path problem with time windows. DIMACS Ser Discrete Math Theor Comput Sci 40:303–318

    Article  MathSciNet  MATH  Google Scholar 

  • Righini G, Salani M (2009) Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Comput Oper Res 36(4):1191–1203

    Article  MATH  Google Scholar 

  • Rousseau LM, Gendreau M, Pesant G, Focacci F (2004) Solving VRPTWS with constraint programming based column generation. Ann Oper Res 130(1–4):199–216

    Article  MathSciNet  MATH  Google Scholar 

  • Roy B (1959) Transitivité et connexité. C R Hebd Seances Acad Sci 249(2):216–218

    MATH  Google Scholar 

  • Russell R, Urban T (2008) Vehicle routing with soft time windows and erlang travel times. J Oper Res Soc 59(9):1220–1228

    Article  MATH  Google Scholar 

  • Sabran G, Samaranayake S, Bayen AM (2014) Precomputation techniques for the stochastic on-time arrival problem. In: ALENEX. SIAM, Philodelphia, pp 138–146

  • Samaranayake S, Blandin S, Bayen A (2012) A tractable class of algorithms for reliable routing in stochastic networks. Transp Res Part C Emerg Technol 20(1):199–217

    Article  MATH  Google Scholar 

  • Santos L, Coutinho-Rodrigues J, Current JR (2007) An improved solution algorithm for the constrained shortest path problem. Transp Res Part B Methodol 41(7):756–771

    Article  Google Scholar 

  • Sivakumar RA, Batta R (1994) The variance-constrained shortest path problem. Transport Sci 28(4):309–316

    Article  MathSciNet  MATH  Google Scholar 

  • Sungur I, Ordónez F, Dessouky M (2008) A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty. IIE Trans 40(5):509–523

    Article  Google Scholar 

  • Taş D, Gendreau M, Dellaert N, Van Woensel T, De Kok A (2014) Vehicle routing with soft time windows and stochastic travel times: a column generation and branch-and-price solution approach. Eur J Oper Res 236(3):789–799

    Article  MathSciNet  MATH  Google Scholar 

  • Tsaggouris G, Zaroliagis C (2004) Non-additive shortest paths. In: European symposium on algorithms. Springer, Berlin, pp 822–834

  • Zimmermann U (1981) Linear and combinatorial optimization in ordered algebraic structures. Elsevier, Amsterdam

    MATH  Google Scholar 

Download references

Acknowledgements

I greatly thank my Ph.D. advisor Frédéric Meunier for his numerous and deep remarks on the mathematics and the way to write this article. I am also grateful to the anonymous referees for their useful comments that clearly helped me improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Parmentier.

Appendix

Appendix

1.1 Proof of Proposition 1

The proof relies on the \(\mathcal {NP}\)-hardness of the following Resource Constrained Shortest Path Problem (Handler and Zang 1980).

Resource Constrained Shortest Path Problem

Input. A digraph \(D=(V,A)\), two vertices \(o,d \in V\), collections \((c_{a})\) and \((w_{a}) \) in \( \mathbb {Z}_+^{A}\), and a threshold \(\tau \in \mathbb {Z}_+\).

Output. An od path P such that \(\displaystyle \sum _{a \in P}w_{a} \le \tau \) and with minimum \(\displaystyle \sum _{a \in P}c_{a}\).

Proof

(Proposition 1) Consider the set \(\mathcal {R}= [0,1]^{2} \cup \{+\infty \}\). We endow it with the partial order

$$\begin{aligned} x\leqslant + \infty , \forall x\quad \text {and} \quad (x^{1},x^{2}) \leqslant ({{\tilde{x}}}^{1},{{\tilde{x}}}^{2}) \text { if } x^{i} \le {\tilde{x}}^{i} , \quad \text {for } i=1,2, \end{aligned}$$
(13)

and the sum operator

$$\begin{aligned} \left| \begin{array}{l} x\oplus + \infty = +\infty \oplus x= +\infty , \forall x\quad \text {and} \\ (x^{1},x^{2}) \oplus ({{\tilde{x}}}^{1},{{\tilde{x}}}^{2}) = \left\{ \begin{array}{ll} (x^{1} + {{\tilde{x}}}^{1}, x^{2} + {{\tilde{x}}}^{2}),&{} \text {if} x^{i} + {{\tilde{x}}}^{i} \le 1, \forall i, \\ +\infty &{} \text {otherwise.} \end{array}\right. \end{array}\right. \end{aligned}$$
(14)

Operator \(\oplus \) is associative and commutative because

$$\begin{aligned} x_{a} \oplus x_{b} \oplus x_{c} = \left\{ \begin{array}{ll} (x_{a}^{i} + x_{b}^{i} + x_{c}^{i})_{i} &{} \text {if } x_{a}^{i} + x_{b}^{i} + x_{c}^{i} \le 1 ,\text {for } i \in \{1,2\}\\ + \infty &{} \text {otherwise.} \end{array}\right. \end{aligned}$$

The order \(\leqslant \) is compatible with \(\oplus \) because, if \(x_{a} \le x_{b}\) and \(x_{a} \oplus x= +\infty \), then \(x_{b} \oplus x= +\infty \). Hence, \((\mathcal {R},\oplus ,\leqslant )\) is a lattice ordered monoid.

We now prove that we can reduce the \(\mathcal {NP}\)-hard Resource Constrained Shortest Path Problem to the problem of computing \(b_{v}^{\mathrm {opt}}\) on a digraph with resources in \((\mathcal {R},\oplus ,\leqslant )\). Let D, o, d, \(w_{a}^{i}\) and \(R^{i}\) be an instance of the Resource Constrained Shortest Path Problem. Let \(x_{a}=(\frac{w_{a}^{i}}{R^{i}})_{i=1,2}\) if \(\frac{w_{a}^{i}}{R^{i}} \le 1\) for \(i=1,2\) and \(+\infty \) otherwise. The \(x_{P} = \sum _{a \in P} x_{a} \ne +\infty \) if and only if \(\sum _{a \in P}x_{a}^{i} \le R_{i}\) for all i. As a consequence, \(\bigwedge _{P\in \mathcal {P}_{od}} x_{P} < +\infty \) if and only if there exists and od path P such that \(\sum _{a \in P}x_{a}^{i} \le R_{i}\) for all i. The value of \(\bigwedge _{P\in \mathcal {P}_{od}} x_{P}\) gives the solution of the Resource Constrained Shortest Path Problem. \(\square \)

1.2 Proof of Proposition 2

The proof relies on the following technical lemma.

Lemma 7

The quantity \(\min _{v}{\tilde{n}}_{v}\) does not decrease along the algorithm.

Proof

Let \({\hat{n}}_{v}\) be the value of \({\tilde{n}}_{v}\) right before being extended if v has been extended, and \({\hat{n}}_{v} = 0\) otherwise. We prove the lemma by showing the following results: at any time during the algorithm, for each pair of vertices (uv), we have \({\hat{n}}_{u} < {\tilde{n}}_{u}\) and \({\hat{n}}_{u} \le {\tilde{n}}_{v}\). This result implies the lemma because it implies that for each vertex u, we have \({\hat{n}}_{u} < {\tilde{n}}_{u}\), and hence \({\tilde{n}}_{u}\) is non-decreasing.

The proof is by iteration on the steps of the algorithm. The result is true at the beginning of the algorithm. Let v be the vertex currently extended, and suppose that the result is true before the extension of v. For each vertex u, let \(n_{u}^{\alpha }\) be the value of \({\tilde{n}}_{u}\) before the extension of v and \(n_{u}^{\beta }\) the value of \({\tilde{n}}_{u}\) after the extension. After the extension of v, we have \({\hat{n}}_{v} = n_{v}^{\alpha } < \infty = n_{v}^{\beta }\). Let u be a vertex distinct from v. The index \({\hat{n}}_{u}\) is not modified during the extension of v. If (uv) is not an arc, or if \({\tilde{b}}_{v} \leqslant x_{(u,v)} \oplus {\tilde{b}}_{u}\) before the extension, then \({\tilde{n}}_{u}\) is not updated, and \(n_{u}^{\beta } = n_{u}^{\alpha } > {\hat{n}}_{u}\) and \({\hat{n}}_{u} \le n_{v}^{\alpha } \le n_{u}^{\alpha } = n_{u}^{\beta }\). If on the contrary u is updated, \(n_{u}^{\beta } = \min (n_{u}^{\alpha },n_{v}^{\alpha }+1)\). As \(n_{v}^{\alpha } \le n_{u}^{\alpha }\), there are two possibilities. In the first case, \(n_{u}^{\alpha } = n_{v}^{\alpha }\), which implies \(n_{u}^{\beta } = n_{u}^{\alpha }\), and by induction hypothesis \({\hat{n}}_{u} < n_{u}^{\alpha } = n_{v}^{\alpha } \le n_{u}^{\beta }\). In the second case \(n_{u}^{\alpha } > n_{v}^{\alpha }\), and we have \(n_{u}^{\beta } = n_{v}^{\alpha } +1 > n_{v}^{\alpha } \ge {\hat{n}}_{u}\). Finally, in both cases \({\hat{n}}_{u} \le n_{v}^{\alpha }\). We have thus proved that \({\hat{n}}_{u} < n_{u}^{\beta }\) and \( {\hat{n}}_{u} \le n_{v}^{\alpha } \le n_{u}^{\beta }\) for each vertex u, which gives the result and the lemma. \(\square \)

The proof of Proposition 2 is now relatively straightforward, as Lemma 7 enables to link the values taken by \(b_{v}'\) along the algorithm to the sequence \((b_{v}^{i})\) defined in Eq. 6.

Proof

(Proposition 2) Lemma 7 ensures that \(\min _{v}{\tilde{n}}_{v}\) does not decrease. Based on this results, the update rule ensures that for each vertex u in L, if \({\tilde{n}}_{u} \ne + \infty \), we have either \({\tilde{n}}_{u} = \min _{v}{\tilde{n}}_{v}\) or \({\tilde{n}}_{u} = 1+\min _{v}{\tilde{n}}_{v}\). As a consequence, \(\min _{v}{\tilde{n}}_{v}\) increases by at most one between two iterations. For each vertex u and index i, define \(b_{u}^{i}\) and \(n_{v}^{i}\) to be equal to the values of \({\tilde{b}}_{u}\) and \({\tilde{n}}_{u}\) when \(\min _{v}{\tilde{n}}_{v} = i\) for the first time. Due to the update rule, we obtain by induction on i that \(b_{u}^{i} = b_{u}^{i-1} \wedge \bigwedge _{(u,v)\in \delta ^{+}(u)} \left( x_{(u,v)} \oplus b_{v}^{i-1}\right) \). Indeed, suppose that the result is true up to \(i-1\), and consider a vertex u, and an arc \((u,v) \in \delta ^{+}(u)\). The update rule then implies \(b_{u}^{i} = b_{u}^{i-1} \wedge \bigwedge _{v \in U_{u}^{i}} \left( x_{(u,v)} \oplus b_{v}^{i-1}\right) \) and \(n_{v}^{i-1} = +\infty \), where \(U_{u}^{i}\) is the set of all v such that \((u,v)\in \delta ^{+}(u)\) and \(n_{v}^{i-1} = i-1\). Besides, if \(n_{v}^{i-1} \ne i-1\), the \(b_{v}^{i-1} = b_{v}^{i-2}\) and the induction hypothesis gives the result. As a consequence, the \(b_{v}^{i}\) correspond to those defined by Eq. (6), and we obtain the first part of the proposition and the dioid case. Besides the update rule ensures that if there is no vertex u in L such that \((v,u)\in \delta ^{+}(v)\), then \({\tilde{b}}_{v} = \bigwedge _{(v,u)\in \delta ^{+}(v)} b_{v}\). Thus, if L is empty at the end of the algorithm, then \(\left( b_{v}\right) _{v}\) defines a solution of Eq. (7), which gives the second part of the proposition. \(\square \)

1.3 Proof of Proposition 3

Proof

(Proposition 3) Let \(\xi \) and \({\tilde{\xi }}\) be such that \(\xi \le _{\mathrm {st}}{\tilde{\xi }}\). Let F and G be their respective cumulative distribution functions, and \(F^{-1}\) and \(G^{-1}\) be their right continuous inverses. The definition of \(\le _{\mathrm {st}}\) implies \(F^{-1}(t) \le G^{-1}(t)\) for all t in [0, 1]. Let U be a uniform [0, 1] random variable, \({\widehat{\xi }} = F^{-1}(U)\), and \(\widehat{{\tilde{\xi }}} = G^{-1}(U)\). For any atom \(\omega \), we have \({\widehat{\xi }}(\omega ) = F^{-1}(U(\omega )) \le G^{-{1}}(U(\omega )) = \widehat{{\tilde{\xi }}}(\omega )\). By monotonicity of probability functional \(\rho \), this implies \(\rho ({\widehat{\xi }}) \le \rho (\widehat{{\tilde{\xi }}}) \).

As \(\xi \) and \({\widehat{\xi }}\) (resp. \({\tilde{\xi }}\) and \(\widehat{{\tilde{\xi }}}\)) have the same cumulative distribution, the hypothesis that \(\rho \) is version independent implies that \(\rho (\xi ) = \rho ({\widehat{\xi }})\) (resp. \(\rho ({\tilde{\xi }}) = \rho (\widehat{{\tilde{\xi }}})\)). The inequality \(\rho ({\widehat{\xi }}) \le \rho (\widehat{{\tilde{\xi }}}) \) then gives the proposition. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parmentier, A. Algorithms for non-linear and stochastic resource constrained shortest path. Math Meth Oper Res 89, 281–317 (2019). https://doi.org/10.1007/s00186-018-0649-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-018-0649-x

Keywords

Mathematics Subject Classification

Navigation