Skip to main content
Log in

The multi-player nonzero-sum Dynkin game in discrete time

  • Published:
Mathematical Methods of Operations Research Aims and scope Submit manuscript

Abstract

We study the infinite horizon discrete time N-player nonzero-sum Dynkin game (\(N \ge 2\)) with stopping times as strategies (or pure strategies). The payoff depends on the set of players that stop at the termination stage (where the termination stage is the minimal stage in which at least one player stops). We prove existence of a Nash equilibrium point for the game provided that, for each player \(\pi _i\) and each nonempty subset \(S\) of players that does not contain \(\pi _i\), the payoff if \(S\) stops at a given time is at least the payoff if \(S\) and \(\pi _i\) stop at that time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Bensoussan A, Friedman A (1977) Nonzero-sum stochastic differential games with stopping times and free boundary value problem. Trans AMS 213(2):275–327

    Google Scholar 

  • Bismut JM (1977) Sur un problème de Dynkin. Z Wahrsch Verw Geb 39:31–53

    Article  MATH  MathSciNet  Google Scholar 

  • Cattiaux P, Lepeltier JP (1990) Existence of an quasi-Markov Nash equilibrium for non-zero sun Markov stopping games. Stoch Stoch Rep 30(2):85–103

    Article  MATH  MathSciNet  Google Scholar 

  • Cvitanic J, Karatzas I (1996) Backward SDEs with reflection and Dynkin games. Ann Probab 24(4):2024–2056

    Article  MATH  MathSciNet  Google Scholar 

  • Dellacherie C, Meyer PA (1980) Probabilités et potentiel, chapitres 1–8. Hermann, Paris

    Google Scholar 

  • Dynkin EB (1969) The game variant of a problem on optimal stopping. Sov Math Dokl 10:270–274

    MATH  Google Scholar 

  • El-Karoui N (1980) Les aspects probabilistes du contrôle stochastique. Ecole d’été de probabilités de Saint-Flour, Lect. Notes in Math. No 876, Springer

  • Etourneau E (1986) Résolution d’un problème de jeu de somme non nulle sur les temps d’arrêt. Thèse de 3-ième cycle, Université Pierre et Marie Curie, Paris 6 (Fr.)

  • Ferenstein EZ (2005) On randomized stopping games. In: Advances in dynamic games, annals of the international society of dynamic games, volume 7. Part III, pp 223–233

  • Ferenstein EZ (2007) Randomized stopping games and Markov market games. Math Methods Oper Res 66(3):531–544

    Article  MATH  MathSciNet  Google Scholar 

  • Hamadène S (2006) Mixed Zero-sum differential game and American game options. SIAM J Control Optim 45:496–518

    Article  MathSciNet  Google Scholar 

  • Hamadène S, Zhang J (2009) The continuous time nonzero-sum Dynkin Game problem and application in game options. SIAM J Control Optim 48(5):3659–3669

    Article  MathSciNet  Google Scholar 

  • Hamadène S, Hassani M (2011) The multi-player nonzero-sum Dynkin game in continuous time. Available at arXiv:1110.5889v1

  • Heller Y (2012) Sequential correlated equilibrium in stopping games. Oper Res 60(1):209–224

    Article  MATH  MathSciNet  Google Scholar 

  • Kiefer YI (1971) Optimal stopped games. Theory Prob Appl 16:185–189

    Article  Google Scholar 

  • Kifer YI (2000) Game options. Financ Stoch 4:443–463

    Article  MATH  MathSciNet  Google Scholar 

  • Kuhn C (2004) Game contingent claims in complete and incomplete markets. J Math Econ 40:889–902

    Article  Google Scholar 

  • Laraki R, Solan E (2005) The value function of zero-sum stopping games in continuous time. SIAM J Control Optim 43:1913–1922

    Article  MATH  MathSciNet  Google Scholar 

  • Lepeltier JP, Maingueneau MA (1984) Le Jeu de Dynkin en Théorie Générale sans l’Hypothèse de Mokobodzki. Stochastics 13:25–44

    Article  MATH  MathSciNet  Google Scholar 

  • Mamer JW (1987) Monotone stopping games. J Appl Probab 24:386–401

    Article  MATH  MathSciNet  Google Scholar 

  • Morimoto H (1986) Nonzero-sum discrete parameter stochastic games with stopping times. Probab Theory Relat Fields 72:155–160

    Article  MATH  MathSciNet  Google Scholar 

  • Nagai H (1987) Nonzero-sum stopping games of symmetric Markov processes. Probab Theory Relat Fields 75(4):487–497

    Article  MATH  MathSciNet  Google Scholar 

  • Neumann P, Ramsey D, Szajowski K (2002) Randomized stopping times in Dynkin games. Z Angew Math Mech 82:811–819

    Article  MATH  MathSciNet  Google Scholar 

  • Neveu J (1975) Discrete-parameter martingales. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Nowak AS, Szajowski K (1999) Nonzero-sum stochastic games. In: Bardi M, Raghavan TES, Parthasarathy T (eds) Stochastic and differential games. Birkhauser, Boston, pp 297–342

    Chapter  Google Scholar 

  • Ohtsubo Y (1987) A nonzero-sum extension of Dynkin’s stopping problem. Math Oper Res 12:277–296

    Article  MATH  MathSciNet  Google Scholar 

  • Ohtsubo Y (1991) On a discrete-time nonzero-sum Dynkin problem with monotonicity. J Appl Probab 28:466–472

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenberg D, Solan E, Vieille N (2001) Stopping games with randomized strategies. Probab Theory Relat Fields 119:433–451

    Article  MATH  MathSciNet  Google Scholar 

  • Shmaya E, Solan E, Vieille N (2003) An application of Ramsey theorem to stopping games. Games Econ Behav 42:300–306

    Article  MATH  MathSciNet  Google Scholar 

  • Shmaya E, Solan E (2004) Two player non zero-sum stopping games in discrete time. Ann Probab 32(3B):2733–2764

    Google Scholar 

  • Sirbu M, Shreve SE (2006) A two-person game for pricing convertible bonds. SIAM J Control Optim 45(4):1508–1539

    Article  MATH  MathSciNet  Google Scholar 

  • Solan E, Vieille N (2001) Quittting games. Math Oper Res 26:265–285

    Article  MATH  MathSciNet  Google Scholar 

  • Stettner L (1982) Zero-sum Markov games with stopping and impulsive strategies. Appl Math Optim 9:1–24

    Article  MATH  MathSciNet  Google Scholar 

  • Touzi N, Vieille N (2002) Continuous-time Dynkin games with mixed strategies. SIAM J Control Optim 41:1073–1088

    Article  MATH  MathSciNet  Google Scholar 

  • Yasuda M (1985) On a randomized strategy in Neveu’s stopping problem. Stoch Process Appl 21:159–166

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous referees for their comments and suggestions which led to the improvement the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Hamadène.

Additional information

This work has been carried out while the second author was visiting Université du Maine, Le Mans (Fr.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamadène, S., Hassani, M. The multi-player nonzero-sum Dynkin game in discrete time. Math Meth Oper Res 79, 179–194 (2014). https://doi.org/10.1007/s00186-013-0458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00186-013-0458-1

Keywords

Mathematics Subject Classification

Navigation